Universal cover of the group $SL_2(\mathbb{R})$

Exercise 1 Denote by $SL_2(\mathbb{R})$ the group of 2×2 matrices of determinant +1 with real entries.

1. Show that any one-parameter subgroup $(g^t)_{t\in\mathbb{R}}$ of $\mathrm{SL}_2(\mathbb{R})$ is conjugate in $\mathrm{SL}_2(\mathbb{R})$ to one of the following three subgroups:

$$\left(s^t = \left(\begin{array}{cc} e^{at} & 0\\ 0 & e^{-at} \end{array}\right)\right)_{t \in \mathbb{R}}, \left(u^t = \left(\begin{array}{cc} 1 & at\\ 0 & 1 \end{array}\right)\right)_{t \in \mathbb{R}}, \left(r^t = \left(\begin{array}{cc} \cos at & -\sin at\\ \sin at & \cos at \end{array}\right)\right)_{t \in \mathbb{R}}.$$

If a is nonzero, $(g^t)_{t \in \mathbb{R}}$ is called *hyperbolic* in the first case, *parabolic* in the second case, *elliptic* otherwise.

2. If $g^t = \exp(tZ)$ with $Z \in \mathfrak{sl}_2(\mathbb{R})$, relate the hyperbolic, parabolic or elliptic nature of (g^t) to the sign of B(Z, Z), where B is the Killing form defined for every $X, Y \in \mathfrak{sl}_2(\mathbb{R})$ by

$$B(X,Y) = \frac{1}{2} \text{Tr}(\text{ad}_X \circ \text{ad}_Y).$$

3. Is the map $\exp : \mathfrak{sl}_2(\mathbb{R}) \to \mathrm{SL}_2(\mathbb{R})$ surjective?

Denote by $\pi: \widetilde{SL_2(\mathbb{R})} \to SL_2(\mathbb{R})$ the universal cover of $SL_2(\mathbb{R})$, and by $\widetilde{\exp}$ the exponential map from $\mathfrak{sl}_2(\mathbb{R})$ to $\widetilde{SL_2(\mathbb{R})}$.

- 4. What is the relation between exp, $\widetilde{\exp}$ and π ?
- 5. Describe the centre of $\widetilde{\mathrm{SL}_2(\mathbb{R})}$.
- 6. Show that if B(Z,Z) < 0, then $(\widetilde{\exp}(tZ))_{t \in \mathbb{R}}$ is an embedded Lie subgroup of $\widetilde{\mathrm{SL}}_2(\mathbb{R})$, isomorphic to \mathbb{R} and containing the centre of $\widetilde{\mathrm{SL}}_2(\mathbb{R})$.
- 7. Are there any connected compact subgroups besides $\{e\}$ in $\widetilde{\mathrm{SL}}_{2}(\mathbb{R})$?

Lie groups and Lie algebra correspondence, covers

Exercise 2 Classify up to isomorphism

- 1. all connected Lie groups with \mathbb{R}^n , where $n \geq 1$, as their Lie algebra;
- 2. all connected Lie groups with $\mathfrak{aff}(\mathbb{R})$ as their Lie algebra;
- 3. all connected Lie groups with heis(3) as their Lie algebra.

Exercise 3 Let G be a Lie group with Lie algebra \mathfrak{g} .

- 1. Let H be a closed subgroup of G. Show that if H is not discrete, it contains a nontrivial one-parameter subgroup.
- 2. Denote by $\mathfrak{z}(\mathfrak{g})$ and Z(G) the centres of the Lie algebra \mathfrak{g} and of the Lie group G. Assuming G is connected, show that Z(G) is discrete if and only if $\mathfrak{z}(\mathfrak{g}) = \{0\}$.
- 3. Give an example of a connected Lie group G such that $\mathfrak{z}(\mathfrak{g})=\{0\}$ but $Z(G)\neq\{e\}$.