Left invariant vector fields and Lie derivatives

Exercise 1 Let $n \in \mathbb{N}$.

- 1. Prove that $GL(n, \mathbb{R})$ is a Lie group, compute its Lie algebra.
- 2. Prove that any continuous map $X: \mathrm{GL}(n,\mathbb{R}) \longrightarrow \mathcal{M}_n(\mathbb{R})$ is a vector field for the manifold $GL(n,\mathbb{R}).$
- 3. Prove that a left-invariant vector field is uniquely determined by its image at identity.
- 4. Let X and Y be left-invariant vector fields. Prove that $\mathcal{L}_X Y(e) = [X(e), Y(e)]$, where e is the identity element of $GL(n,\mathbb{R})$. Is the vector field \mathcal{L}_XY also left-invariant? Hint: the flows φ_X^t and φ_Y^t are left-invariant isomorphisms of $GL(n,\mathbb{R})$.

About the exponential map

Exercise 2 Let G be a real or complex Lie group and e its identity element. Show there exists a neighbourhood U of e in G such that if H is a subgroup of G contained in U, then $H = \{e\}$.

Exercise 3 Let G and H be Lie groups. Assume G is connected.

- 1. Consider φ and ψ two Lie group morphisms from G to H. Assume there exists $g_0 \in G$ such that $\varphi(g_0) = \psi(g_0)$ et $T_{g_0}\varphi = T_{g_0}\psi$. Show that $T_e \varphi = T_e \psi$, then that φ and ψ coincide on a neighbourhood of g_0 . Finally, conclude that $\varphi = \psi$.
- 2. Let φ be a C^{∞} diffeomorphism of G, such that for any left-invariant vector field X, we have $\varphi^*X = X$. Show that there exists $g_0 \in G$ such that $\varphi = L_{q_0}$.

Some connected, some disconnected Lie groups

Exercise 4 Prove that if a subgroup H of a group G is connected and the quotient G/H is also connected, then G is connected.

Let $n \in \mathbb{N}$. Prove that the following groups are connected.

- 1. $GL(n,\mathbb{R})^+ = \{ g \in \mathcal{M}_n(\mathbb{R}) \mid \det g > 0 \}.$
- 2. $SL(n, \mathbb{R})$.
- 3. $SO(n, \mathbb{R})$.

Exercise 5 Lorentz transformations

In $\mathbb{R}^{2,1}$ consider the quadratic form $Q\begin{pmatrix} x \\ y \\ t \end{pmatrix} = x^2 + y^2 - t^2$. Denote by (e_x, e_y, e_t) the canonical basis.

1. Draw the hypersurfaces $\{Q = 0\}$ and $\{Q = 1\}$ and $\{Q = -1\}$.

Vectors of $\mathbb{R}^{2,1}$ in $\{Q=0\}$ (resp. $\{Q>0\}$ and $\{Q<0\}$) are called light-like (resp. space-like and time-like).

- 2. The subsets of light-like (resp. space-like, time-like) vectors, which is connected?
- 3. Prove that the following map is surjective. Deduce that SO(2,1) is not connected.

$$SO(2,1) \longrightarrow \{Q = -1\}$$

 $g \longmapsto ge_t.$

Hint: one may want to use the following Q preserving transformations

$$\left\{ \begin{pmatrix} \cosh t & 0 & \sinh t \\ 0 & 1 & 0 \\ \sinh t & 0 & \cosh t \end{pmatrix} \middle| t \in \mathbb{R} \right\}, \quad \begin{pmatrix} 1 & (0) \\ -1 & \\ (0) & -1 \end{pmatrix}.$$

Adjoint representation and invariant differential forms

Exercise 6 Let G be a Lie group of dimension $n \geq 1$, with Lie algebra \mathfrak{g} .

- 1. Show that the differential s-forms ω on G that are left-invariant (i.e. such that for any $g \in G$, $L_g^*(\omega) = \omega$), form a vector space in natural bijection with $(\Lambda^s(\mathfrak{g}))^*$.
- 2. Let ω be a left-invariant s-form on G. Show that for any $g \in G$, $R_g^*(\omega)$ is left-invariant. What element in $\Lambda^s(\mathfrak{g})$ does it correspond to?
- 3. Show that if G is compact and connected, then any left-invariant or right-invariant n-form is automatically bi-invariant.

On compact connected complex Lie groups

Exercise 7 Let G be a connected compact complex Lie group. Let V be a finite-dimensional complex vector space. Let $\rho: G \to \operatorname{GL}(V)$ be a complex Lie group morphism.

- 1. Show that $\rho(G) = \{ \text{Id} \}$.

 Hint: A bounded holomorphic map from \mathbb{C} to \mathbb{C} is constant.
- 2. Deduce that any connected compact complex Lie group is commutative.