Exercise 1 Consider Aff(\mathbb{R}) = $\{x \mapsto ax + b : (a, b) \in \mathbb{R}^* \times \mathbb{R}\}$ the set of affine transformations of \mathbb{R} .

- 1. Prove that $Aff(\mathbb{R})$ is a Lie group.
- 2. Compute the Lie algebra of $Aff(\mathbb{R})$, that we denote by $\mathfrak{aff}(\mathbb{R})$. Hint: One may write $Aff(\mathbb{R})$ as a subgroup of a matrix group.

Let V be a real vector space of dimension 2, and let $\{X,Y\}$ be a basis of V.

- 3. Show that any anticommutative bilinear map on V defines a Lie bracket.
- 4. Show any 2-dimensional real Lie algebra is either commutative or isomorphic to $\mathfrak{aff}(\mathbb{R})$.
- 5. Check that each of these Lie algebras is isomorphic to the Lie algebra of a Lie group.

Exercise 2 Define the lower central series (C_n) and the derived series (D_n) of a Lie algebra \mathfrak{g} by setting $C_0 = D_0 = \mathfrak{g}$ and, for any integer $n \geq 0$, $C_{n+1} = [C_n, \mathfrak{g}]$ and $D_{n+1} = [D_n, D_n]$. Call \mathfrak{g} nilpotent if there exists n such that $C_n = 0$; solvable if there exists n such that $D_n = 0$. For each group below:

(a) show it is a Lie group;

(d) give a basis B for its Lie algebra \mathfrak{g} ;

(b) tell if it is connected or not;

(e) compute brackets between elements in B;

(c) compute if possible its Lie algebra g;

(f) is \mathfrak{g} commutative? nilpotent? solvable?

1.
$$O_2(\mathbb{R}) = \{ x \in \mathcal{M}_2(\mathbb{R}) \mid {}^t xx = I_2. \}$$

2.
$$SL_2(\mathbb{R}) = \{x \in \mathcal{M}_2(\mathbb{R}) \mid \det x = 1\}$$

3.
$$SU(2) = \{x \in \mathcal{M}_2(\mathbb{C}) \mid {}^t \overline{x} x = I_2 \& \det x = 1\}$$

4. Heis(3) =
$$\left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \middle| (x, y, z) \in \mathbb{R}^3 \right\}.$$

5. $\operatorname{Sol}(3) = \mathbb{R} \ltimes \mathbb{R}^2$, with the product manifold structure, where $t \in \mathbb{R}$ acts on \mathbb{R}^2 via the matrix $\begin{pmatrix} e^t & 0 \\ 0 & e^{-t} \end{pmatrix}$. (Realise $\operatorname{Sol}(3)$ as an embedded subgroup in $\operatorname{SL}_3(\mathbb{R})$.)

Exercise 3 Isomorphisms $\mathfrak{su}(2) \simeq \mathfrak{so}(3)$ et $\mathfrak{sl}_2(\mathbb{R}) \simeq \mathfrak{so}(1,2)$. Recall the following definitions of classical Lie groups

SO(3) =
$$\{x \in \mathcal{M}_3(\mathbb{R}) : {}^t x \, x = I_3 \& \det x = 1\}$$

SO(2,1) = $\{x \in \mathcal{M}_3(\mathbb{R}) : {}^t x \begin{pmatrix} -1 & 0 \\ 0 & I_2 \end{pmatrix} x = \begin{pmatrix} -1 & 0 \\ 0 & I_2 \end{pmatrix} \& \det x = 1\}$

1. Check that SU(2) consists in matrices of the form $\begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix}$, with $|a|^2 + |b|^2 = 1$. Deduce that SU(2) is diffeomorphic to a well-known 3-manifold.

2. Show that $E_1 = \frac{1}{2} \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$, $E_2 = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $E_3 = \frac{1}{2} \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$ form a basis of its Lie algebra $\mathfrak{su}(2)$. What are the bracket relations between E_1 , E_2 et E_3 .

On $\mathfrak{su}(2)$, consider the quadratic form $Q(M) = \det(M)$.

- 3. Let $\varphi : \mathfrak{su}(2) \to \mathbb{R}^3$ give the coordinates of $U \in \mathfrak{su}(2)$ in the basis $\{2E_1, 2E_2, 2E_3\}$. What quadratic form on \mathbb{R}^3 corresponds to Q via φ ?
- 4. Deduce that the adjoint representation naturally defines a morphism $\rho: SU(2) \to SO(3)$.
- 5. Show that ρ is a submersion, then that it is a surjective morphism. What is its kernel?
- 6. Deduce from the above that SO(3) is diffeomorphic to a well-known 3-manifold and that $\mathfrak{su}(2)$ and $\mathfrak{so}(3)$ are isomorphic.

Let
$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
, $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.

7. Show that H, E and F forme a basis of the Lie algebra $\mathfrak{sl}_2(\mathbb{R})$. Compute the brackets between H, E, F.

Given a finite-dimensional real Lie algebra \mathfrak{g} , its Killing form is the symmetric bilinear form $B_{\mathfrak{g}}: \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ defined by $B_{\mathfrak{g}}(x,y) = \operatorname{tr}(\operatorname{ad} x \circ \operatorname{ad} y)$.

- 8. Show that a Lie algebra isomorphism sends Killing form to Killing form.
- 9. Denote by B the Killing form on $\mathfrak{sl}_2(\mathbb{R})$. Find the matrix of B in the basis H, E, F. What is its signature?
- 10. Determine the signature of the Killing form of $\mathfrak{su}(2)$. Deduce that the Lie algebras $\mathfrak{su}(2)$ et $\mathfrak{sl}_2(\mathbb{R})$ are not isomorphic.
- 11. Adapt the above to show the Lie algebras $\mathfrak{sl}_2(\mathbb{R})$ et $\mathfrak{so}(1,2)$ are isomorphic.