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Abstract

Let G be a semisimple Lie group without compact factor and I' < G a torsion-free, cocompact,
irreducible lattice. According to Selberg, periodic orbits of regular Weyl chamber flows live on tori. We
prove that these periodic tori equidistribute exponentially fast towards the quotient of the Haar measure.
From the equidistribution formula, we deduce a higher rank prime geodesic theorem. As a corollary, we
obtain an upper bound of the growth of conjugacy classes with non-trivial polynomial term.

1 Introduction

Let G be a semisimple, connected, real linear Lie group without compact factor. Let K be a maximal
compact subgroup, A be a maximal R-split torus, At C A a closed positive chamber such that the Cartan
decomposition G = KATK holds. Denote by M := Zx(A) the centralizer of A in K.

Let I < G be a torsion-free, cocompact lattice. The double coset space I'\G/M is called the space of
Weyl chambers of the symmetric space I'\G/K. We study the counting and equidistribution of the compact
right A-orbits in the space of Weyl chambers.

1.1 Pioneering works on hyperbolic surfaces

In this case, G = PSL(2,R) is the isometry group of the Poincaré half-plane H?, the space of Weyl chamber
is the unit tangent bundle of the hyperbolic surface I'\H? and the right action of A on I'\GG/M corresponds
to the geodesic flow. Periodic orbits of the geodesic flow project in the surface to primitive closed geodesics.

Prime geodesic theorems In 1959, Huber [Hub59] proved a prime geodesic theorem for compact hyper-
bolic surfaces. He obtained an estimate of the number of primitive closed geodesics as their length grows
to infinity. More precisely, let N(T') be the number of primitive closed geodesics of length less than T on a
hyperbolic surface. He proved that as T" tends to infinity,

N(T) ~ eT/T.

This term is similar to the asymptotic z/ log x given by the prime number theorem® for the number of primes
less than z. In 1969, using dynamical methods, Margulis [Mar69] extended the prime geodesic theorem to
negatively curved compact manifolds. He proved that the exponential growth rate of N(T') is equal to the
topological entropy of the geodesic flow. Later on, relying on Selberg’s Trace formula, Hejhal [Hej76] and
Randol [Ran77] obtained a precise asymptotic development of the counting function in terms of the spectrum
of the Laplace-Beltrami operator. In 1980, Sarnak [Sar80] extended their precise asymptotic development to
finite area surfaces.

Let us state one of the various equivalent formulations of the prime geodesic theorem. For a closed geodesic
c on T'\H?, denote by £(c) the length of this geodesic. Let cy be the primitive closed geodesic underlying c.

Then as T — +o00 -
S| e = Xt~ 1)

1See Pollicott’s research statement §1.2 [Pol]




where the first sum is over all primitive closed geodesics, the second sum is over all closed geodesics. This
sum is similar to the second Chebyshev function: the weighted sum of the logarithms of primes less than a
given number, where the weight is the highest power of the prime that does not exceed the given number.
The second Chebyshev function is essentially equivalent to the prime counting function and their asymptotic
behaviour is similar.

Equidistribution of closed geodesics Margulis in his 1970 thesis? and Bowen [Bow72b], [Bow72a] inde-
pendently studied the spatial distribution of the closed orbits of the geodesic flow. They proved that closed
orbits uniformly equidistribute towards a measure of maximal entropy as their period tends to infinity. In
the second 1972 paper, Bowen proved the uniqueness of the measure of maximal entropy for the geodesic
flow. As a consequence, the measure of maximal entropy of the geodesic flow is equal to the quotient of the
Haar measure. Later, Zelditch [Zel92] generalized Bowen’s equidistribution theorem to finite area hyperbolic
surfaces.

Let us recall Bowen and Margulis’ result for a compact hyperbolic surface. For every primitive periodic
orbit F' C T'\PSL(2,R), denote by Pr the unique probability measure invariant under the geodesic flow
supported by F. For every T > 0, we denote by G,(T) the set of primitive periodic orbits of minimal period
less that T. Bowen and Margulis proved that for every bounded smooth function f,

T
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where mp is the measure of maximal entropy, which also corresponds in our case to the quotient measure of
the Haar measure on I'\PSL(2, R).

The following non exhaustive list [DeG77], [GW80], [PP83], [Rob03], [Nau05], [MMO14] provides some
of the many subsequent works tackling the counting and equidistribution problem in several different rank
one generalisations.

1.2 Main results

In this article, we focus on the higher rank case® for G, meaning that dimg A > 2. Denote by a := Lie A
the Cartan subspace, by a* the closed positive chamber in the Lie algebra and by at¥ its interior.

Definition 1.1 (Periodic flat tori). For any right A-orbit F in T\G /M, we define the set of periods of F as
AF):={Y cal|ze¥ =2 Vz€ F}.

A period Y in A(F) is called regular if Y € att. When A(F) is a maximal grid of a, we say F a periodic
flat torus or a compact A-orbit.

Denote by C(A) the set of compact A-orbits in I'\G/M. For every F € C(A), we denote by L the
quotient measure on F' of Leb,, the Lebesgue measure on a. Note that Lg is not a probability measure. Its
total mass, denoted by vols(F'), is the Lebesgue measure of any fundamental domain in a of the grid A(F).

Main counting result We use vol to denote the Haar measure on G whose quotient on the symmetric
space X := G/K equals the measure induced by the Riemannian metric. Denote by || || the Euclidean
norm on a coming from the Killing form on g and by B, the balls for this norm. For every T > 0, set
BF(0,T) := Ba(0,T) Na™ and Dy := K exp (Ba(0,T)) K, which is the preimage by the quotient map
G — X of the ball of radius T centered at eK in the symmetric space X.

Theorem 1.2. Let G be a semisimple, connected, real linear Lie group without compact factor and I' < G
be a torsion-free, cocompact irreducible lattice. Then there exist constants Cg > 0 and u > 0 such that for
T>0
S AR 0 BEF(0,T)] vola(F) = vol(Dr)(Ca + O(e™T)). (2)
FeC(A)

2See Parry’s review [Par]
3more precisely, we do not have restrictions on the rank of G



There exists C; > 0 such that for any non-degenerate parallelotope domain P C at whose faces are parallel
to the walls of the Weyl chamber, there exists an entropy dp > 0, a gap up > 0 such that for T >0

> AF)NTP et volo(F) = 77 (C + O(e ). (3)
FeC(A)

Remark 1.3. 1. The irreducible condition is from the use of the lattice counting result of Gorodnik-Nevo (CH.
Theorem 3.4).

2. The simplest example of the reducible case is the product of two closed hyperbolic surface, where the
counting of periodic tori can be deduced directly from its product structure and the counting of periodic
geodesics. For the general reducible case, more works need to be done to obtain the counting results.

We deduce this counting result from the subsequent equidistribution statement.

Main equidistribution result Denote by 7 : G — I'\G/M the projection and by mr the quotient measure
of the Haar measure vol. We normalise mr to obtain a probability measure that we denote by mr.

We obtain a higher rank version of the Bowen-Margulis equidistribution formula with an exponential rate
of convergence.

Theorem 1.4. Under the same hypothesis and for the same constants Cg > 0 and u > 0 as in the previous
Theorem 1.2, for all T > 0 and every Lipschitz function f on T\G/M we have

1 ++ _ —uT .
— LS AR N BH0,7)) /F J dLp = Co / f dimp + O™ |f|1:y). (4)
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Additionally, for the same C{, > 0, parallelotope domain P C at and constants op,up > 0, for all T >0
and every Lipschitz function f on T\G/M we have

e TN \A(F)OTPﬂaJrﬂ/Ff dLFZCIG/F f dmp + 07| flLip)- (5)

FeC(A) \G/M

The asymptotic behaviour of the main term for the ball domain is vol(Dr) ~ COT%e‘SoT, where
0o > 0 is determined by the root system of g, the Lie algebra of G and Cy > 0 is given by the Harish-Chandra
formula. Without the error term, we deduce the following convergence where 7 := dim A.

Ce ge %7
= > |A(F)ﬂ3i+(07T)|/ fdlp —— f dmr. (6)
= FeC(A) F T=ee Jrva/m

Note that in the rank one case, any periodic flat torus F' corresponds to a primitive closed geodesic.
Furthermore, both vol,(F') and its smallest regular period correspond to the length of the geodesic. Therefore
Theorem 1.2 is a higher rank version of the prime geodesic theorem (1).

In the compact case, Spatzier in his thesis [Spa83] computed, using the root spaces of the Lie algebra of
G, the topological entropy of every regular Weyl chamber flows: right action of exp(RY") on I'\G/M, where
Y € a™ is non zero. Furthermore, dg, the exponential growth rate of vol(Dr), is a sharp upper bound of
the topological entropy of regular Weyl chamber flow. He also proved that Jy is equal to the exponential
growth rate of the sum over periodic flat tori of the smallest regular period less than ¢ of vol,(F'), as t goes to
infinity. Knieper [Kni05] studied the equidistribution of periodic orbits of regular Weyl chamber flows in the
same setting. He obtained an equidistribution formula towards the measure of maximal entropy of the most
chaotic regular Weyl chamber flow, whose topological entropy is dg. In the finite volume case, Oh [Oh04]
proved that the number of periodic flat tori of bounded volume is always finite.

In the compact case, Deitmar [Dei04, Theorem 3.1] used a Selberg trace formula and methods from
analytical number theory to give the main term (3) in Theorem 1.2 (Using (45) to connect the counting of
conjugacy classes in Theorem 3.1 in [Dei04] with Theorem 1.2). Actually, Deitmar’s result is more general
that he only needs each edge of the parallelotope goes to infinite. For parallelotope domain, Theorem 1.2
and 1.4 provides an equidistribution result and an exponential speed of convergence, which is new compared
to [Dei04].
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Figure 1: This is a positive Weyl chamber for SL(3,R) and 7" > 0 is large. In blue, our counting re-
gion Bf(0,T). In green, Deitmar-Gon-Spilioti’s [DGS19] counting region. In red, Guedes Bonthonneau—
Guillarmou-Weich’s [GBGW?21] counting region where C is a convex cone strictly inside a™ delimited by
the red dashed lines, 0 < a < b are real numbers and ¢ is a linear form strictly positive on a™.

Remark 1.5. Recently and for the compact case, Guedes Bonthonneau-Guillarmou—Weich [GBGW21, The-
orem 2, equation (0.3)] obtained a weighted equidistribution formula. Each period point is weighted by
a dynamical determinant and the region where they count the period points is defined using any convex
non-degenerate closed cone C strictly inside a*™, any choice of positive numbers 0 < a < b and any linear
form ¢ that takes positive values in a® as shown in red in Figure 1. They take a different approach, relying
on the spectral properties of the A-action via their previous study of Ruelle-Taylor resonances with Hilgert
[GBGHW20).

For the non-compact, finite volume case SL(3,Z)\SL(3,R), Einsiedler-Lindenstrauss-Michel-Venkatesh
in [ELMV11] use the classification of diagonal invariant measures and subconvexity estimates to deduce an
equidistribution result for the following collection of tori. They take sets of periodic tori of the same volume
and prove that the sum of Lebesgue measures on those tori, normalised by the total mass, equidistributes
towards the quotient measure of the Haar measure as the volume goes to infinity.

Deitmar later on generalised his counting result to the non-compact finite volume case SL(3,Z)\SL(3,R),
in joint work with Gon and Spilioti in [DGS19], with a different summation region in the Weyl chamber, the
one in green in Figure 1.

Remark 1.6. 1. Our counting region in (4) is different (shown in blue in Figure 1), so our first asymptotic
term is new in the higher rank case.
None of the above works provides estimates on the speed of convergence. The decay rate u in Theorem
1.4 only depends on a parameter n(G,T") from spectral gaps, so it is uniform over all congruence subgroups.
2. In a forthcoming paper, we will prove the same counting and equidistribution results for irreducible
non-cocompact higher rank lattices. The extra ingredient for the non-cocompact case results from the non-
escape of mass for periodic tori. The case for SL4(Z) is written in a previous arXiv version.

Counting conjugacy classes We deduce an asymptotic formula of loxodromic conjugacy classes with a
weight given by the volume of the corresponding periodic torus. See Section 9 for more details.

One application is an upper bound of the growth of conjugacy classes. Set [I'] be the set of conjugacy
classes and let

[TI(T) == {[h] € T][A(7) € Ba(0,T)},

where A(7) is the Jordan projection of v (Cf. Definition 2.3). Because I' is torsion free, there is a one-to-
one correspondence between conjugacy classes and free homotopic classes of closed geodesics of the locally
symmetric space I'\X. So |[I'](T)| is the number of free homotopic classes of closed geodesics of length less
than ¢. In rank one case, this equals the number of closed geodesics of length less than ¢. Hence counting
conjugacy classes is a group theoretical generalization of counting closed geodesics. See [CK02] for related
work on hyperbolic groups.



The exponential growth rate of |[I'](T)| for higher rank lattice is still unknown [Kni05]. Here we give an
upper bound with a non-trivial polynomial term.

Theorem 1.7. Let T' be a cocompact irreducible lattice without torsion. Then

650T

()] < T2

where r = dim A.

The interesting point is that the polynomial term 7~ ("+t1/2 in the upper bound depends on the real rank
of the group G. We hope this polynomial term is the correct asymptotic for |[I'](7")|. This upper bound also
hints at Knieper’s question in [Kni05, Remark in page 175].

Question 1.8. Is there a connection between counting conjugacy classes and (unweighted) counting pediodic
A-orbits by volume?

The above Theorem may be a key tool in providing an asymptotic for the number of compact A-orbits of
volume less than a given number.

1.3 Overview of the proofs

The first step of the proof is to rewrite the sum of “delta masses on the tori” (Cf. §4) using conjugacy
class of loxodromic elements in the discrete group and their Jordan projection. In the SL(2,R) case, periodic
orbits of the geodesic flow are in one to one correspondence with conjugacy class of hyperbolic elements
in the discrete group. In the higher rank case, every regular period Y € A(F) N a™™ of any periodic flat
torus F' corresponds to a regular Weyl chamber flow z +— ze!¥ that admits for all z € F a 1-periodic orbit.
Now, instead of hyperbolic elements and the translation length, we use loxodromic elements and the Jordan
projection A (Cf. Definition 2.3). The conjugacy class of any loxodromic element [y] in the discrete subgroup
is in a one to one correspondence with (Fj,;, A(7)), where Fl,; is an A-orbit and A(7) one of its regular periods
(Cf. Proposition 8.2). Denote by I''°* the subset of loxodromic elements whose conjugacy class corresponds
to a compact A-orbit and rewrite the sum as follows.

> AME)NBITO, ) Le= > Lr,. (7)
FeC(A) [v]e[rter]
AT

In the cocompact case, by a Selberg’s Lemma in [Sel60] (Cf. Lemma 8.1) then I''*® = T''*% je. every
1-periodic orbit of a regular Weyl chamber flow lives in a periodic flat torus.

1.3.1 Local equidistribution

In a second step of the proof, we follow Roblin’s strategy [Rob03, Chapter 5] to get a local equidistribution
in the cover: the space of Weyl chambers G/M of the symmetric space X = G/K.

Roblin works in a CAT(—1) space, let us sketch his method in the particular case of the hyperbolic plane
and for a cocompact, torsion free, discrete subgroup I' < SL(2,R).

Using Patterson-Sullivan theory, he constructs the Bowen-Margulis-Sullivan (BMS) measure mpy;s on
(OH? x 0H? \ A) x R where A is the diagonal. By Hopf coordinates, mpss corresponds to a I-invariant and
geodesic flow invariant measure on T H?2.

Roblin then relies on mixing of the geodesic flow for the BMS measure in [Rob03, Chapter 4] to deduce
an equidistribution formula of orbit points (yz, 7_1:1:)7@. In average, these points equidistribute towards a
product of conformal Patterson-Sullivan densities of the geometric boundary of H2. That horofunction and
geometric compactification coincide in this case is one of the key reasons why this convergence holds.

To get from orbit points to periodic orbits, he then relies on a geometric configuration between z, vz, v 12
that implies that ~ is hyperbolic. For any point z € H? and an isometry ~ such that 2 # ~z, denote by
vt € OH? (resp. v, ) the endpoint of the geodesic starting at = going through vz (resp. v 'x). Namely,
if the geodesic of endpoints v} and ~, passes close enough to z and dg:(x,vx) is large enough, then



is hyperbolic, its translation axis passes close to z and the attracting (resp. repelling) endpoint 4+ € OH?
(resp. ™) is close to v, (resp. 7, ). Under restriction to suitable small sets called "corridors”, this geometric
configuration allows to remove finitely many terms in the sum of Dirac masses, the rest corresponding to
translation axis of hyperbolic elements. Using a partition of unity, one then deduces the equidistribution in
the quotient T (I'\H?).

Higher rank situation Horofunction and geometric compactification of higher rank symmetric spaces are
no longer the same. However, the space of Weyl chamber G /M of the higher rank symmetric space X admits
Hopf coordinates F*) x a (Cf. [Thi07, Chapter 8, §8.G.2] or §2 below), where F is the Furstenberg boundary
and F® is the subset of transverse pairs in F x F.

Each delta mass Lp, , in the sum (7) is the quotient of the measure of /M whose disintegration along
Hopf coordinates is D+ ® D~ ® Lebg, where 4+ (resp. v7) are the attracting (resp. repelling) fixed points
for the left action of v on F.

The Haar measure on G/M can be disintegrated along the Hopf coordinates and we write it as a higher
rank BMS measure. Haar densities on F satisfy identities reminiscent of Patterson-Sullivan theory (Cf. §2.2
or [Hel00],[A1b99], [Qui02]).

We do not look for an equidistribution formula of orbit points in a suitable compactification of the higher
rank symmetric space. Instead of looking at geodesic half-lines and their endpoints in the geometric boundary,
we use the identification of G/M with geometric Weyl chambers i.e. isometric embeddings in X of the closed
positive Weyl chamber a™ which in turn can be parameterized by X x F, the data of the base point and the
asymptotic Weyl chamber which identifies with the Furstenberg boundary. For every v and x € X, provided
vz is in the interior of a geometric Weyl chamber based at x i.e. du(z,yx) € atT, (Cf. (9) for a formal
definition) one can define the asymptotic directions of angular points in the Furstenberg boundary v, v .
Gorodnik-Nevo [GN12a] and Gorodnik-Oh [GO07] prove an equidistribution formula of ”angular” points for
irreducible lattices towards Haar densities of F.

For Lipschitz test functions ¢ and any = € X, for all T > dx (o, z),

1 _ 1
vol(Dr) 2 W%‘f%):W/wdug@e@uﬁﬁ:(ﬂw,@

yel
da(2,y2)EBIT(0,T)

where p, is the Stabg(x) invariant Haar density on F and the error E(T,¢,2z) = O(Lip(¢)Cy vol(Dr)™")
with k > 0 and logC, > dx(o,z). Their formula provides an error term that comes from the spectral
properties of averaging operators on the Borel probability spaces I'\G.

Then we get from asymptotic angular points to attracting or repelling fixed point of loxodromic elements
by adapting the geometric argument to the higher rank case.

Organization of the paper

In Section 2, we gather the basic facts and preliminaries about semisimple real Lie groups, the space of Weyl
chambers, the Furstenberg boundary, Hopf coordinates.

In Section 3, we recall Gorodnik-Nevo’s works on angular equidistribution of lattice points, volume growth
asymptotics and their regularity in logscale.

In Section 4 we obtain an asymptotic upper bound on the number of almost singular lattice points.

In Section 5, we gather the properties of two types of distances in the Furstenberg boundary. In particular,
we study the distorsion of balls under G-action.

Section 6 is dedicated to the disintegration of the Haar measure on G/M.

In Section 7, we prove a key lemma comparing the angular part of an element in G with its contracting and
repelling fixed points in the Furstenberg boundary.

In Section 8, we relate loxodromic elements and periodic tori.

In Section 9, we prove Theorem 1.4 for cocompact lattices.

In Section 10, we prove Theorem 1.7.

In the Appendix, we follow the works of Gorodnik-Nevo [GN12a] [GN12b] and explain why their results work
in our setting.



Notation. In the paper, given two real functions f and g, we write f < g or f = O(g) if there exists a
constant C' > 0 only depending on G, I such that f < Cg. We write f < g if f < g and g < f.
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2 Background

In the whole article, G is a semisimple, connected, real linear Lie group,
without compact factor.

Classical references for this section are [Thi07], [GJT98], [Hel01]. One also may refer to the exposition in
[DG21].

Let K be a maximal compact subgroup of G. Then X = G/K is a globally symmetric space of non-
compact type and G = Isomg(X). We fix a base point 0o € X such that K = Stabg(0). For every x € X, we
denote by K, := Stabg(x). Note that for any h, € G such that h,o = z, then K, = h, Kh;!, independently
of the choice of h,.

Geometric Weyl chambers Denote by g (resp. £) the Lie algebra of G (resp. K) and consider the Cartan
decomposition in the Lie algebra g = ¢ @ p. Let a C p be a Cartan subspace of g. Then A := exp(a) is a
maximal R-split torus of G. Denote by M := Zk(A) the centralizer of A in K. The real rank of G, denoted
by rg, is equal to dimg a. We say that G is of higher rank when rqg > 2.

For any linear form « on a, set g, := {v € g | Yu € a, [u,v] = a(u)v}. The set of restricted roots is
denoted by ¥ := {a € a* \ {0} | go # {0}}. The kernel of each restricted root is a hyperplane of a. The
Weyl chambers of a are the connected components of a \ Uyex ker(a)). We choose a positive Weyl chamber
by fixing such a connected component and denote it (resp. its closure) by at™ (resp. at). In the Lie group,
we denote by ATt := exp(a™™) (resp. AT := exp(a®t)). Denote by Nk (A) the normalizer of A in K. The
group N (A)/M is the Weyl group, denoted by W. The Weyl group also acts on the Lie algebra a by the
adjoint action, which acts transitively on the set of connected components of a \ Uyex ker(a).

A geometric Weyl chamber is a subset of X of the form g.(A%0), where ¢ € G. The base point of the
geometric Weyl chamber gA™o is the point go € X. In [DG21, §2], we obtained the following identifications
between the space of Weyl chambers and the set of geometric Weyl chambers of X,

G/M ~ G.(A%o). (8)

Cartan projection

Definition 2.1. For any g € G, we define, by Cartan decomposition, a unique element a(g) € a* such that
g € Kexp(a(9))K. The map a : G — a™ is called the Cartan projection.



Recall ||.]| is the associated norm on a coming from the Killing form. The Cartan projection allows to
define an a*-valued function on X x X, denoted by d,. For every x,y € X, any choice hy, hy € G such that
hzo =z and hyo =y, we set

da(,y) := alhz hy). (9)

This function does not depend on the choice of h, and hy up to right multiplication by K. We define the
G-invariant riemannian distance on X

dx (z,y) := [|da(2, y)l.

The following fact is standard for symmetric spaces of non-compact type.

Fact 2.2. For every x,y € X, there is a geometric Weyl chamber based on x containing y. If furthermore,
do(z,y) € at™, such a geometric Weyl chamber is defined by a unique element hyyM € G/M such that
hzyo = and hmyedﬂ(l"y)o =1y.

Jordan projection Denote by 2 the subset of roots which take positive values in the positive Weyl
chamber. It allows to define the following nilpotent subalgebras n := @, cx+8a and 1= = D exv+G—q-
Denote by N :=exp(n) and N~ := exp(n~) two maximal unipotent subgroups of G.

By Jordan decomposition, every element g € G admits a unique decomposition g = g.grg, where g., g
and g, commute and such that g. (resp. gn,g,) is conjugated to an element in K (resp. AT, N). The
element g. (resp. gn, gu) is called the elliptic part (resp. hyperbolic part, unipotent part) of g.

Definition 2.3. For any element g € G, there is a unique element \(g) € a™ such that the hyperbolic part
gn is conjugated to exp(\(g)) € AT. The map X\ : G — a* is called the Jordan projection.

Any element g € G such that M(g) € a*™ is called loxodromic. Non lozodromic elements are called singular.
Denote by G'°% (resp. G*"9) the set of lovodromic (resp. singular) elements of G and for any subset S C G,
denote by S'° .= S NG (resp. S"9 .= SN G*"I),

Equivalently (Cf. §4 [Dan21]), loxodromic elements are conjugated in G to elements in AT+ M.

Asymptotic Weyl chambers Denote by P := M AN and by F := G/P the Furstenberg boundary. We
recall the interpretation of F in terms of asymptotic Weyl chambers.

Following the exposition in [DG21], we introduce the following equivalence relation between geometric
Weyl chambers:

g1A o~ gATo <= sup dx(gi1a0,gea0) < +oo.
a€ A+t

Equivalence classes for this relation are called asymptotic Weyl chambers. Denote by 7 (resp. (o) the
asymptotic Weyl chamber of A*o (resp. (AT)710). The set of asymptotic Weyl chambers identifies with the
Furstenberg boundary (see for instance [DG21, Fact 2.5] for a proof),

F = (G.(AT0)/ ~) ~ K/M ~ K.n. (10)

Since M AN~ is also a minimal parabolic subgroup of G, it is conjugated to P = M AN. Choose k_ € K
such that MAN~ := k_(P)k_" and set {y := k_no. By definition, Stabg(ny) = P and Stabg((o) = MAN~.

Remark 2.4. Note that one may choose in this particular case for k_ an element in Ng(A) such that
k_AtE~t = (AT)~L

The more general construction is detailed in the following. Let © C II be a subset of simple roots and let
We be the Weyl subgroup generated by reflections s, for a € ©F. Then the standard parabolic subgroups
of G may be parameterized by Pg := PWgP where Py is the Borel subgroup. Here we take the reverse of
the Bourbaki convention [Bou04].

Denote by 7 the Cartan involution of G (Cf. [Hel01]): it is an automorphism of G that acts on a by —id
and on A by a +— a~1. For SL(d,R), the Cartan involution is the automorphism g + *(¢~!). The involution
7 induces an involution of the set of simple roots ¢ : IT — II, such that for all subset © C II, the parabolic
subgroup 7(Pe) is conjugated to P,(g). Denote by Pg := 7(Pe). In particular, for the Borel subgroup, the
parabolic P~ = M AN~ is a conjugate of P.



In the remainder of the article, we identify G.(A10)/ ~ with F and G.(A"0) with G/M. We recall that
a geometric Weyl chamber is uniquely determined by its base point in X and the asymptotic Weyl chamber
it represents.

Fact 2.5. The following G-equivariant map is a diffeomorphism:
G/M —5 X x F
gM — (go, go).
For every (z,§) € X xF, we denote by g, ¢ M € G/M the geometric Weyl chamber of base point x asymptotic
to &.

Busemann and Iwasawa cocycle For every £ € F and g € G, consider, by Iwasawa decomposition
K AN, the unique element o(g,§) € a, called the Iwasawa cocycle, such that if ke € K satisfies keng = &,
then

gke € K exp(a(g,§))N. (11)
The cocycle relation holds (Cf. [BQ16, Lemma 5.29]) i.e. for all g1, g2 € G and £ € F, then
(9192, &) = (g1, 928) + 0 (g2, &)- (12)

Note that restricted to K x F, the Iwasawa cocycle is the zero function, i.e. for every k € K and £ € F,
then o(k,€) = 0. This motivates the following definition of the Busemann cocycle for two points of X and
an asymptotic Weyl chamber.

Definition 2.6. For every x,y € X and £ € F, we define the Busemann cocycle by
Be(x,y) = a(hy thy, hy*€)
independently of the choice of hy, hy € G such that hpo = x and hyo = y.

Remark that for every x,y € X and £ € F, for all g € G and all z € X

Be(@,y) = By (92, 9y) (13)
Be(z,y) = Be(z, ) + Be(2,9)- (14)
The first equation is the G-invariance of the formula, whereas the second is due to the cocycle relation of the

Iwasawa cocycle.

Transverse points in F The subset of ordered transverse pairs of F x F is defined by the G-orbit

F® = {(gn0,9¢0) | g € G}. (15)

We say that £, 1 € F are opposite or transverse if (£,n) € F?.

In terms of asymptotic Weyl chambers, &, n € F are opposite when there exists a geometric Weyl chamber
g-(A%0) asymptotic to £ such that g.((A+)~1o) is asymptotic to 7. Note that (Cf. §3.2 [Thi07]) we have the
following identifications

F@ ~G/AM.

Definition 2.7. For every (£,n) € F®), for any choice ge.n € G such that ge (0, o) = (§,m), we denote by

(€n)x = gey-(Ao)

the associated maximal flat in the symmetric space X.

For every (r,€) € X x F, we denote by & € F the unique opposite point to & such that x € (£6F)x.
Equivalently, &+ := 92,6Co, where gz ¢ M € G/M corresponds (Cf. Fact 2.5) to the geometric Weyl chamber
of base point T asymptotic to &.

Remark 2.8. Note that ({y)+ = 1o and vice-versa.



Hopf coordinates Let H be the Hopf coordinate map of G/M (Cf. [Thi07, Chapter 8, §8.G.2] or [DG21])
H:G/M — F? xa
gM = (gm0, 90, (9, 70))-
Hopf coordinates are left G-equivariant and right A-equivariant in the following sense:

(i) the left action of G on G/M reads in those coordinates equivariantly on F() and using the Twasawa
cocycle as follows. For all h € G and (£,7,Y) € F? x q,

h(§n,Y) = (h&, hn,Y + o(h,§)). (16)

(ii) the right action of A on G/M reads for all (&,1,Y) € F® x a and a € A by keeping the first two
coordinates constant and translating the last one by log(a)

H(H'(&n,Y)a) = (§,1,Y + log(a)).

Using the geometric Weyl chamber interpretation and the Busemann cocycle notations, the Hopf map
reads the same as in Roblin’s work [Rob03]:

XxF—F@xa
(xaé-)'—> (§7§j7ﬁ§(07l’))

This translated map is also left G-equivariant in the sense that for every g € G and every (z,§) € X x F,
using the cocycle relation (13), the element (g, g€) has Hopf coordinates

(g&, ngL’ ﬁgﬁ(oa gO) + 55(07 .’B))

Note that Sge(0, go) = 0(g, ), therefore the notations are consistent.

(17)

3 An effective angular equidistribution

We present the equidistribution result of Gorodnik—Nevo [GN12a]. First, for elements whose Cartan
projection is in the interior of the Weyl chamber, we build a pair of angular points in F. In rank one, these
points are the endpoints of the half-geodesics based at the origin point and going through the image and the
inverse image of the origin.

Then we state Gorodnik—Nevo’s equidistribution theorem, where they require the lattice to be irreducible.
In this paper, we only apply their result to a ball shaped domain and to a parallelotope domain. Their result
allows for other domains, the so-called well-rounded domains. Finally, we give an equivalent of the volume
growth of these domains and the regularity of such growth in logarithmic scale.

3.1 Cartan regular isometries

Recall that by Cartan decomposition, for every element g € G there exist k,l € K and a unique element
a(g) € at such that g = kexp(a(g))!~!. Note that k and [ are defined up to right multiplication by elements
in Zk (exp(a(g)))-

Definition 3.1. For all x € X, we denote by a, : G — a' the map that assigns to every g € G the
at-distance between x and gz, i.e. a,(g) = du(z,gx). We say that g is z-cartan regular if a,(g) € at+.
Let g be an z-cartan reqular element, consider h,h' € G such that ho = h'o = x with he%(9o = gz and

We(9 o = g tx. We set gf := hno and g, = h'ng. In particular, when x = o, we can take h = k and
' =lk,.
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Note that for every g € G we have a,(g) = a(h; 'gh,), independently of the choice of h, € G such that
hzo = x. Furthermore, provided that g is z-cartan regular,

gf = hw(h;lghz)f (18>

Remark that (z,g}) € X x F (resp. (z,g;)) is the unique geometric Weyl chamber based on  containing

gz (resp. g~ 1z). In the PSL(2,R) case, an element g is z-cartan regular when gz # z, then g € OH? (resp.

gz ) is the asymptotic endpoint of the half geodesic based on z going through gz (resp. g~'z). Recall a
lemma about comparing Cartan projections.

Lemma 3.2 ([Kas08] Lemma 2.3). For all h,h' € G we have the following inequalities,
la(hh’) = a(h)|| < lla(R)Il and f|la(h'h) — a(h)|] < [la(h)]-
We translate it using our notations.

Lemma 3.3. For all g € G, every x,y € X, the following bound holds:

la,(9) —a,(9)ll <2dx(z,y).

Proof. Let z,y € X and choose h;, hy, € G such that h;o = x and hyo = y. We compare the Cartan projection
of h = h;lghy to the Cartan projection of its conjugate by h’' = h;lhx. Using that [|a(h)| = [|a(h'~1)|| and
Lemma 3.2 we get

la,(9) — a, (9l < 2[lahy  ha)]-

Since [la(h, 'h,)|] = dx (z,y), we deduce the Lemma. O

3.2 Angular distribution of Lattice points

We introduce here some subsets of G and probability measures on the Furstenberg boundary. They will
be used to obtain the main term and the exponentially decaying error term in our main Theorems 1.2, 1.4.
For t > 1, let D; := K exp(®D¢)K and where ©; may be one of the two following types of domains

Ball domain Bq(0,t) Na™,

Parallelotope domain ¢P where P = H [0,ag] with 0 < ag, V8 € IL.
BeIl

Denote the subset of Cartan-regular elements by
Dy .= Dy N (K exp(a™ ) K).

For all x € X, we consider similar sets
Dy(x) := hyDih; 1,

D} (x) := hyD;*h ",

where h, € G is any element such that h,o = x. These sets do not depend on the choice of h,.

Let us introduce so-called Patterson densities. For « € X, denote by K, the stabilizer group of = in G.
Let p, be the unique K, invariant probability measure on the Furstenberg boundary F. Then we have for
geGandor e X

Gxlbz = Mgz, (19)

where g, i, is the pushforward of u, under the g action. This relation holds because the stabilizer of g, is
given by gK,g7 ! = K.

Theorem 3.4. Let G be a connected, real linear, semisimple Lie group of non-compact type. Let I’ < G
be an irreducible lattice. There exist kK > 0 and Cqy > 0. Let x € X. Then for all Lipschitz test functions
Y € Lip(F x F), there exists E(t,,z) = O(Lip(1))Cy vol(Dy) ™) when t > Cydx (0, x) such that

1 1
> v ) = e ¥ dpg @ pip + B(t,1), ).
VOI(Dt) ’\/GD:eg(ZE)mF VOI(F\G) FxXF
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This is due to Gorodnik-Nevo in [GN12a]. We include the proof of this version for Lipschitz functions in
the appendix. The main term is due to Gorodnik-Oh in [GOO07].

Remark 3.5. The above formula should also work for more general Parallelotope domains P’ = []5.y[ag, bs]
with 0 < ag < bg , VB € II. They are unions of |II| + 1 parallelotopes defined as above where only one of
them has dominant volume growth, the other volumes grow exponentially slower.

3.3 Volume growth of the ball domain
Applying the Harish-Chandra formula for D; (see [Hel00, Chapter I Theorem 5.8]) yields

vol(Dy) = /@ I, cx+ sinh(a(Y))™s dLeb(Y), (20)

where m,, € N is the multiplicity of the positive root . Now denote by p the half of the sum of positive roots
with multiplicities and set dp := 2maxyep, (0,1) P(Y'). Such choice will allow a uniform volume estimate (Cf.
Lemma 11.13 in the Appendix).

vol(Dy) ~ 5 %ot (21)

3.4 Volume growth of the parallelotope domain
In this subsection, we denote by D, := K exp(tP)K where P is a parallelotope domain defined as above.

Lemma 3.6. Let P := HBeH[O,ag] where ag > 0 for all B € I and dp = supp 2p. There exits a positive
0~ < dp and Cg > 0 such that, ast goes to +0o0,

vol(K exp (tP)K) = Cqe®”! + 0(e’ 1). (22)

Proof. Starting with the Harish-Chandra density, we first develop the hyperbolic sine and factor by 1/2, then
we further develop the products of sums of exponentials using that 2p = > s+ mac.

[T sinhla(r))ms = 2= Zeew e [T (20 - m00)™ = 9= Zucys me <62p<Y>+ prem)

aext aext wER

where R = {Qp — Y aent 2kaa(Y) [0 < ko < mg and K, € Z+} \ {2p} is a subset of linear forms of a and
the coefficients p,, € Z are integers. Hence, by the Harish-Chandra formula

vol(K exp (tP)K) = 2~ Zacs+ o ( | e aey)+ X n [
P

) dLeb(Y))
wER tP

Recall that the set of simple roots II form a basis of a* and that any positive root is a vector of non-negative
integers in this basis. For any element w € RU{2p}, denote by (ng (w))ﬁen its integer coefficients. Denote by
Ju the Jacobian between the dual basis of I and the canonical basis i.e. such that dLeb(Y) = Ju [[gcy dys.
Then by a change of variables, using that P = [] BEH[O’ ag] and splitting the exponential in the dual basis
we deduce that

J, tag . tag s
vol(K exp (tP)K) = Qzagima( H /O e (205 dy, + pr H /0 e8(@)ys dy/;)
pell

wER BeIL
otns(20)as _ 1

_ Ji etnswlas _q
- 2Xaewt e (ﬁll na2e) 21l >

wER BeIl nﬁ(w)

Ji
agxt M [lgen ns(20)
the products into sums, the main term is Cge®?* and the remaining terms are O(e’ *) for some 6~ € (0,5p)
determined by the simple roots and (ag)gemn- O

Finally, set Cg := = and 6p := ) 5.1 np(2p)ag. Note that dp = supp 2p. By developing
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3.5 Regularity of volume growths
Lemma 3.7. The function t — logvol(D;) is uniformly locally Lipschitz for t > 1.

The proof is given in Lemma 11.14 in the Appendix. This means that there exists C' > 0 such that for
all0 <e<1landt>1, we have
vol(Diye) < e vol(Dy).

4 Counting almost singular lattice elements

For 0 < s < t, let
Di :={g € D¢ | a(g) € Ba(9at,s)}

be the set of elements in D; whose Cartan projection have distance at most s to the boundary of the Weyl
chamber.
For all © € X, we define a similar set (independently from the choice of h, such that hyo = x)

D;(x) := hyD{h; !,

We first obtain volume growth estimates of these sets. We then deduce an asymptotic upper bound of the
number of elements in I' in these sets.

Lemma 4.1. There exists ep > 0 which only depends on Dy such that for every 0 < € < €p, there exists
k(€) > 0 such that fort > 1

vol(Df') e
wol(Dy) — OvolDy) “). (23)

Proof. The proof is similar to Lemma 9.2 and 9.4 in [GWO07]. Let ®; = {Y € Dy, d(Y,da™) < s}. Recall
D, = a™ N B,(0,t) for ball domain and ©; = P(c,) for parallelotope domain. Then by (20), we have
vol(Dy) S/ e?(Y) qy. (24)
o

By Lemma 9.2 in [GWOT], if € smaller than some constant ep, then by the strict convexity of B4(0,1) and
P(cq), there exists k'(€) > 0 such that

2p(Y) < 6o — K ().
1gleagcip()_o K (€)

So by (24), we have vol(D¢) < tdimAeo—r"()t Due to the asymptotic of vol(D;) (21), the proof is
complete. O

Lemma 4.2. Let I' be a lattice in G, then for allt > 1 and € < ep,

‘Fﬂng _ —k(e)
SelDy = OlD) ™),

Proof. Let € > 0 be a small constant such that the ball centered at e with radius €' satisfies B(e,e’) N
I'B(e,€') = {e}. Then we have
vol(B(e, e")Dg)

I ND§t| <
| vl= vol(B(e, €))

By Lemma 3.2, we have for i’ € B(e,€’) and h € Dg,
la(h'h) = a(R)|| < lla(R')|| < L€',
for some ¢ > 0. Therefore the product set

’
B(e,€)D§" ¢ DA
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Hence we have o

vol(Dehre

F N Det < t+Lle

| vl= vol(B(e,€'))’

which is O(vol(D;)'~*#(€)) due to Lemma 3.7 and 4.1. O

As a corollary, we have

Lemma 4.3. For0<e<ep/2,t>1 and x € X with dx(o,x) < min{ 2(1526), 4(1'1(5E;€))}t, we have
IT' N Dt ()] R (2
22 N O(vol(D,)—(29)/2)
vol(Dy) (vol(Dy) )

Proof. By Lemma 3.3, we have
[ao(v) — az(V)| < 2dx(z,0).
Therefore by Lemma 4.2 with 2¢ we obtain

€ € d ) —k(2¢€
TN D) <IN Dtt;;ixﬁfow < vOl(Dyy2d (2.0)) "3,

where we use the hypothesis that et + 2dx (z,0) < 2¢(t 4+ 2d x (z, 0)).
By hypothesis, we have
(1 —k(2€))(t+ 2dx (0, z)) < (1 — K(2€)/2)t.
Then by (21), we have
VO]-(Dt+2dX(x7o))1_H(2€) = O(VOI(Dt)l_H(ze)/Q).
The proof is complete. O

As a corollary, combined with Lemma 4.3 we have

Lemma 4.4. There exist C5 > 0 and C > 0 such that if t > Csdx(0,x), then

[T N Dy()]
vol(D;) — ¢

Proof. Due to the definition C,, = C1e€09x(2%) e know that if t > dx (0, x), then by taking ) = 1 Theorem
3.4 implies that
IT' N D;*(x)| < vol(Dy).

For the part [I'N (Dy(z) — Dy (z))], if t > dx(o0,z), then we can use Lemma 4.3 to bound it. Combining
these two parts, we obtain the lemma. O

5 The Furstenberg boundary

Representations of a semisimple Lie group Let us first recall a few facts about representations of a
semisimple Lie group. Let (V,p) be a representation of G into a real vector space of finite dimension. For
every real character y : a — R, we denote by

Vy i={v eV | p(u)v = x(u)v, Yu € a}
the associated vector space. The set of restricted weights is the subset
E(p) = {x [ Vi #{0}}-
They are partially ordered using the positive Weyl chamber as follows.
(x1 < x2) & (x1(u) < x2(u), Vu € at).

When the representation p is irreducible, the set of restricted weights admits a maximum, called the mazimal
restricted weight. The irreducible representation p is proximal when the associated vector space of the
maximal restricted weight is a line.

14



Restricted weights of the fundamental representations For the adjoint representation, the set of
restricted weights coincides with the set of restricted roots Y. Denote by X7 the set of positive restricted
roots and by IT C X7 the set of simple roots. Tits ([BQ16, Lemma 6.32]) proved that for every a € II, there
exists an irreducible and proximal representation (p,, V*) of G such that the restricted weights are in

{xo‘, X*—a, X*—a— > ngB|ng eZ+}. (25)

BEIL

Furthermore, the maximal weights (x®)aen of these representations form a basis of a*.

Distances in the projective space For every o € II, we choose a Euclidean norm ||.|] on V¢ such that
the elements in p,(A) (resp. po(K)) are symmetric (resp. unitary). Note that ||pa(a)|| = exp(x*(loga)) for
all @ € A*. Abusing notation, we denote by ||.|| the induced Euclidean norm on V* A V. Remark that for
alla € AT,

I A2 pa(a)]| = exp((2x™ — @) loga). (26)
We define the distance in the projective space for all z,y € P(V<) as follows,

_ v Awyl

da(z,y) = 1oe 20yl
vz l-[[vyl

(27)
independently of the choice of v,,v, € V such that + = Rv, and y = Rv,. Note that this distance is
equivalent to the induced Riemannian distance on P(V®), since we are taking the sine of the angle in [0, 7/2]
between two lines. For all z € P(V*) and ¢ € (0, 1], denote by B(z,¢) the ball centered at x of radius e for
this distance.

Denote by ¢ € P(V) the projective point corresponding to the eigenspace for the maximal restricted
weight . Since p,(A) are symmetric endomorphisms for the Euclidean norm on V¢, the orthogonal
hyperplane to z¢ is p,(A)-invariant and abusing notations we write

1
(%)™ = Bxes(panixa} V-

For all projective point y € P(V®), we denote by y~ C V* the orthogonal hyperplane and by ¢, € (V)* a
linear form such that ker ¢, = y*. For all z,y € P(V®), we define (independently of the choice of non-zero
vy € T)

L |90y (Ua:)|
R PN W 2%)
By properties of the norms and distances on the projective space, the previous function is symmetric and for
all z,y € P(V®),
daly,z) = dalz,y) = da(yL,x) = da(y7xL). (29)
Hence dq (2%, (z$)1) = 1. For all € > 0, denote by VE((xi)L)C ={y €e P(VY) | daly,23) > €}. We give a
proof of the following classical dynamical lemma for completeness.

Lemma 5.1. Let € > 0 and a € AT. Assume there exists a € I such that a(loga) > —2log(e). Then
pal@)Ve((2$))E C B(ag,e).

Proof. We use the notations in §14.1 [BQ16]. Let « € II such that a(loga) > —2log(e). Recall (26) that
| A2 pa(a)|| = exp((2x™ — a) loga) and ||pa(a)]| = exp(x*(loga)). We compute the gap between the first and
second eigenvalues of p,(a),

172 2@ _ -aios)
71,2(/)@(&)) = — ¢ a(loga)
[lpa(a)|l?

By assumption, e~*(°89) < £2 hence 71 5(pa(a)) < £2. Then we apply Lemma 14.2 (iii) in [BQ16], for every
y € Ve((@2)H)E,
dOl (poé (a)ya xl—xi-)éé (x(-)it-7 y) < 71,2(/)04 (a))

By definition dq(y, %) > €, hence dn(pa(a)y, xS ) < € and we deduce that pa(a)Vs((xi)l)c C B(z%,e). O
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Distances and balls in 7 Using the fundamental representations (pq)acm, Tits (Cf. [BQ16, Lemma
6.32]) also proved that the following map is an embedding;:

F— [ ROV
acll

f = k770 — (‘xa(g))aeﬂ = (pa(k)xi)oﬂél—L

Denote by dp Riemannian distance on the product space II,enP(V%). Recall that on any product space
X XY where (X, ¢1) and (Y, g2) are endowed with Riemannian metrics g1 and gs, the product Riemannian
metric g is given for all (x,y;v,w) € T34 X x Y where (z,v) € T, X and (y,w) € T,,Y, by

9(z,y3v,w) = g1(z,v) + g2(y, w).
The Riemannian distance dg associated to this product Riemannian metric satisfies
max{d;,ds} < dgr < dy +do.

Since for every « € II, the distance d,, is equivalent to the Riemannian distance on the projective space, we
deduce that dp is equivalent to the maximal metric i.e. dp < d := sup,cp do. Using Tits’ embedding of F
in to the product space II,enP(V®), we deduce that the induced metric is non-degenerate on F. We thus
define the following distance on F for all £,n € F

d(&,m) = sup da(z¥(£), 2%(n))- (30)

It is equivalent to the Riemannian distance on F induced by the embedding on the product space II,eP(V¥).
For all £ € F and ¢ € (0,1), we denote the balls for this distance by

B(&,e) :={ne Fld(&n) <e}. (31)
Similarly, noting that ((o)Z = 1o, we set
0(&m) = inf da(2(€),2%(0;)) = inf da(z(€),2%(15)7). (32)
For all £ € F and ¢ € (0,1), we denote the balls for § by
Ve(§) :=={ne Fldn¢) <e}. (33)

Using the above notations given for the balls in F for 6 and d and their K-invariance, we upgrade the
dynamical Lemma 5.1 to elements in G whose Cartan projection is far from the walls of the Weyl chambers.

Lemma 5.2. For all g € G, choose k,l € K by Cartan decomposition such that g = kexp(a(g))l~1. Let
e > 0 and assume that d(a(g),dat) > —2loge, then gV.(1¢o)¢ < B(kno, ).

Proof. Note that «(v) < d(v, ker ) for all v € a*. Hence by taking the infimum over «a € II, then using that
inf,er d(v, ker @) = d(v, Ugem ker &) and finally, because a™ is a salient cone, dat = at N (Uaen ker a), we
deduce that for all v € at,

d(v,0a™) < inf a(v).

acll
Now using the underlying constant in =<, we may assume that, inf,cma(a(g)) > —2loge. Applying the
dynamical Lemma 5.1 simultaneously for all a € II, using Remark 2.8 that ((o)Z = 79, we deduce that
e2@V_(¢)E € B(no,e). Finally, we deduce the lemma by invariance of left K-action on both d and . O

Action of G on F We want to understand how the left action of G on F distorts the balls for § and d.
Let Cy > 1 be a positive constant such that for all v € a,

1
v|| < su ()] < A Cqllv]l.
\/(Ta” ||_aeglx()|_\/ al ]|

This constant gives the comparison of the sup-norm induced by the dual basis (x*)aenr with the Euclidean
norm || || on a.
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Lemma 5.3. The distances d and 6 are left K-invariant. There exist Cy,Cy > 1 such that for all g in G
and &,m in F, we have the following inequalities:

(i) (g€, gn) < CreeIx(@99)d(g, m),
(i) 6(g€, gn) < Creodx(©99)6(¢ n),
(iti) |o(g,€) = o(g,m)|| < Credx@99d(g, n),
(iv) [lo(g, &)l < Cadx (0, go).
Furthermore, for every xz,y € X and £ € F, (iv) is the same as

(iv’) [|Be(z,y)|| < Cadx (2,y).
In particular, for all z € X we set C, := C1e%09x(2:%)  Then for all h, € G such that hyo = x and all £ € F
and every r € (0,C 1), the inequalities given by (i) and (ii) imply

(i) B(ha, Cx_lT) C hyB(§,7) C B(hy§, Cyr),

(i) Ve,r(ha) C haVi(§) C Vo1, (haf).
Proof. For each V*, by (13.1) in [BQ16], we have

da(2*(98), 2% (9m)) < [Pa(@)I?llpalg™ )P da(z*(&), 2% ().

By (30) and ||pa(9)]] = llpa exp(a(g))|| = exp(x*(a(g))), we obtain the first inequality for Cy = 4C,,.
For (ii), we first prove that (z%((gn)2))* = pa(g)z®(nt)*t. There exist ki, k € K such that n = k1o and
gk1 = kan € KAN. Then due to k preserving o and the Euclidean metric on V¢, we obtain

(@ ((gma ) = (@ ((kno)7)) " = palk)(@®((m0)5)*-

Due to AN preserving (z*((n0);))* = (2*())*, we deduce that pa (k)(z*((110)5 )" = pa(gk1)(@*((10)5))*-
Therefore, we obtain (z((gn)L))* = pa(9)(x®(nt))*. Then for all £,n € F,
(

)
Ja(2(9€),z*((gn)5 ) = da(2®(9€),2%((9m)5) ") = dalpa(9)z*(€) ", palg)z®(ny)")
< lpaa)?llpa(a)~HI* da(z (&), 2% (ny) ).
Therefore, since ||pa(9)|l|lpa(9) 1 < exp(2sup(x®(a(g)), x*(ta(g)))) and Cy = 4C,, we deduce that
)

098, gn) = nf da(2(g€), 2% ((9m);)) < Cre®I2@lo(g, ).

(i) is given in [BQ16, Lemma 13.1].

(iv), see [DG21, Lemma 3.12] for a similar statement, and it is also a direct consequence of [BQ16, Lemma
6.33 (ii), Corollary 8.20].

Finally (iv’) is a consequence of the formulas SB¢(x,y) = o(hy 1hy,hy 1¢) and dx(z,y) = |lalhy hy)|
independently of the choice of h;, h, € G such that hyo =z and hyo =

6 Disintegration of the Haar measure

Patterson—Sullivan measures were generalized to the higher rank setting in [Alb99], [Qui02]. We follow
Thirion’s [Thi07, Chapter 9 §9.e] construction of higher rank Patterson—Sullivan measures. He dealt with
the space of Weyl chambers of SL(d, R), it turns out that his method is more general.

Let p = % > aey; @ be the half of the sum of positive roots with multiplicities. By [Qui02, Lemma 6.3] or
[Hel00, I 5.1], for ¢ in G and every £ € F we have

dg;ﬂo () = e—Polg™h€) 6*P5£(90’0)7 (34)

which is a G quasi-invariant measure. Note that in the rank one notations, we replaced the critical exponent
with the linear form p and apply it with the higher rank Busemann function. Then we will introduce the
Gromov product to obtain a G-invariant measure on F(2),
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Definition 6.1. For a pair (€,n) € F?), we associate it with the unique element (£|n), in the Lie algebra a
such that for all weights x©
lp(v)]

g 7
lellol

where v € V® — {0} is a representative of x*(€) and ¢ is a non zero linear form such that ker ¢ = z(n-)= .

X (€ln)o = —1lo

This definition already appears in [BPS19, Section 8.10], [Sam15, Section 4] for semisimple Lie groups and
[Thi07] for SL4(R). Our definition of the Gromov product seems different from the one in [BPS19], [Sam15].
By using the correspondence between linear forms and hyperplanes for Euclidean spaces, we can verify that
they are the same.

Let wg be the unique element in the Weyl group which sends the Weyl chamber a™ to the Weyl chamber
—aT. Let + = —wq be the inverse involution. An important property is that [Sam15, Lemma 4.12]: for all
g € G and (£,1) € FP, we have

(9€lgn)o — (€In)o = to(g,€) + a(g,m). (35)
We also define the Gromov product at other points  in X by G-invariance, by setting
(€|77)z = (h;1€|h;1n)07

where h, is some element such that hyo = x. Since by (35), the Gromov product at o is left K-invariant,
this definition is independent of the choice of h,. In [BPS19], the authors proved that the Gromov product
(&n)o in norm is almost the same as the distance between o and the maximal flat (£n)x C X.

Lemma 6.2. [BPS19, Proposition 8.12] There exist C3 > 1,C" > 0 such that for any (£,1) € F3), we have

G (€moll < delo. €n)x) < Call €l + €.

By G-invariance, we deduce that for every z € X and (£,7) € F?

C%ll(fIn)gaH < dy(x, (€n)x) < Csl| €l + C"

For all x € X and (£,7) € F®), we define the (0, 1]-valued function
fz(&;m) = exp(=p(€|n)e)-
Recall y, from (19). We define measures v, on F2) by

dpz (§) dp(n)
f=(&m)

Proposition 6.3. For all x € X, the measure v, is G-invariant and equal to v,. We denote it by v.

dv(&m) = (36)

In the hyperbolic case, the measures u, are called Patterson-Sullivan and v ® Lebg is the Bowen-Margulis-
Sullivan measure. In the SL4(R) case, Thirion [Thi07] gave a construction of this measure and proved those
properties. We include a proof for completeness.

Proof. By (35), for all z € X, all (¢,7) € F® and every h, € G such that h,o =z
fo(&m) = fo(hi '€, hitn) = fo(&,m) exp(=p(io(hz !, €) + o bz n)))
= fo(&,m) exp(—p(1Be(x, 0) + By(x,0)))

On the other hand,
dpiy . d(hz)«tto _ —pa(h;'.€)
dpto €)= dpo ©)=e '
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We obtain the same formula for 1. Combining the above two equations and using that pio(h;!,€) =
po(h;t,€), we obtain that
Vg = V.

By definition of the Gromov product, we have for all g € G

fw(g£7g77) = fg*lx(gan)'

By equation (19) and using that vy-1, = v,,

y _ d,u'z(gg) d,uz(gn) _ dugflr(g) d/‘gflx(n) — dv. — dv
d r(gé.vgn) - f:p(g€7g77> - fg*l;c(gan) - d g z(é-vn) d r(fﬂ?)

Hence v, is G-invariant. O

With this G-invariant measure v on F®) we deduce the disintegration of the Haar measure on G /M
along Hopf coordinates.

Proposition 6.4. The product measure v®@ Leb on F2) x a is a disintegration in Hopf coordinates of a Haar
measure on G/M.

Proof. The product measure v ® Leb is G-invariant by Proposition 6.3 and by Hopf coordinates, it is a
measure on G/M. So it is a Haar measure on G/M. O

7 A configuration for being loxodromic

Recall Definition 2.3 that the elements in G of Jordan projection in a™* are called loxodromic. Equiv-
alently, loxodromic elements are conjugated to elements in AT+ M. Let g € G be a loxodromic element,
choose hy € G such that h;lghg € exp(A(g))M. Note that ghyM = hge)‘(g)M. Denote by g7 := hgno (resp.
g~ = hg(p) the attracting (resp. repelling) fixed points in F for the action of g. They are independent of
the choice of hy. Hence for every Y € a, in Hopf coordinates

99", 97, Y)=(9%,97,Y + Ag)). (37)

7.1 Distances on G/M

On one hand, denote by d; the left G-invariant and right K-invariant Riemannian distance on G/M. Tt
is the higher rank analogue of the distance on the unit tangent bundle of H2. The map (G/M,d;) — (X,dx)
is continuous and equivariant for the left G-action.

On the other hand, using Hopf coordinates, we consider ds, a distance equivalent to the Riemannian
product distance induced by the embedding F) x a < F x F x a. These distances are locally equivalent,
however, since dg is not left G-invariant they are not globally equivalent.

We compute an expanding estimate for the action of G on G/M for da. Then we deduce the constants
underlying the local equivalence of d; and ds.

Distance induced by Hopf coordinates For every pair (61,£7,v), (nt, 77, w) € F® x a, we define

do (7,67, 0v), (0", n,w)) :==sup(d(ET, "), d(E,n7), [Jlv—w])). (38)

Due to the definitions (30) of the distances on F, the distance ds is not left G-invariant even though it is left
K-invariant. Since d is equivalent to the Riemannian distance on F and the maximal metric is equivalent to
the Riemannian metric on the product space F x F X a, the distance ds is equivalent to the product distance.
It is non-degenerate because of the embedding F*) x a < F x F X a.

Abusing notations, for every z1,20 € G, we also denote by da(21 M, 2o M) := dy (H(21M),H(22M)) For
all (1,67 ,v) € F@ x q, all r € (0, $6(£7,€7)), the ball of radius 7 for dy centered in that element is

B(£1,7) x B(67,7) x Ba(v,7).
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Lemma 7.1. For g € G and z1, 22 in G, we have
dg(gle, gZQM) S Cleco‘lg(g)“dz(le, Z2M).

Proof. We write down z; M and zeM in Hopf coordinates, we denote by (£, &, v;) := H(z;M) for i = 1,2.
By (16) and Lemma 5.3 (i),(ii),(iii), we have

da(gz1 M, gzo M) = da (&, 9&7 01 + 0(9.€)), (965, 9€5 w2 + 0(9,€5))
=sup (d(g&, 965), d(9€1,965), lvr —v2 + 0(9, &) — a(9,6)|)
< sup (Cre@le@l (g, &f), Cre®@le@l d(er, &5 ), Cre®leDl d(el, &) + [|vr — val])
< C1e0la DN qy (2 M, 2o M).

As a consequence, for all z1 € G/M, small r >0 and g € G

gBy(z1,7) C By(gz1, CreColla@llyy,

Local equivalence constants Since d; and ds are Riemannian metrics of G/M, they are locally equivalent.
We fix a neighbourhood O of eM and a constant Cy > 0 such that for every z1, 25 € O,

1
6d2(2172’2) < dy(z1,22) < Cada(z1, 22).
9

For any r > 0, denote by By(zM,r) C G/M the ball of radius r centered on zM, for the distance d;. Fix
€0 > 0 such that Bj(eM,ey) U Ba(eM, eq) C O.

Definition 7.2. Forxz € X, let
Ox = 80201 GXp(CQdX (0, :c)) (39)

Lemma 7.3. Forz € X and 21,22 € G/M with x = 7(z1), if da(z1, 22) < é—i or di(z1, 22) < €9, then

Cy
dl(Zl, 22) S ng(zl, ZQ).

Proof. We take h, such that h 12, = eM. Then we have either
do(hy 21, hy t2e) < Cuda(z1, 22) < €0,

(due to Lemma 7.1) or dy(h;lz1,h;t22) = di(z1,22) < €. Due to the choice of €y, we can apply local

equivalence at eM and Lemma 7.1 to obtain

d1(2’1722) = dl(h_;lZl,hilZQ) S ngg(h_;lzhh;lzg) S C’mdg(zl,zg)/ll.

x

The proof is complete. O

7.2 Corridors of maximal flats

Recall from Definition 2.7, for every point y € X and every £ € F, we denote by 5;- € F the opposite
element such that y € (ffyl) x-

Definition 7.4. Let z € X andr > 0. We denote by F? (z,r) the open corridor of maximal flats at distance
r of x
FO(,r) = {(&n) € F? | dx(w, (En)x) <7} (40)

We denote by }f:@(m,r) the set of Weyl chambers based in Bx (x,r)

]-/'(VQ)(JC,T) = {(5,5;,65(0,3/)) eF@ xa ‘ y € BX(CC,T)}. (41)
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By Hopf coordinates (17), we obtain

Fact 7.5. For all x € X and r > 0, the set ]?(g)(x,r) is the preimage of Bx(x,r) by the projection
G/M — G/K.

Lemma 7.6. Let x € X and min{ %, 100%2} > 7> 0. Then for every e € (0,C;1'r), all (€+,67) € FO(x,7),

B(¢t,e) x B(¢™,e) € FP(x,2r).

Proof. Let (¢€7,67) € F®)(z,r) as in the hypothesis. There exists y € By (z,r) such that £~ = (f*‘)yL Now
we choose in Hopf coordinates z := (£7,£7 , B¢+ (0,y)). By properties of di, that Bx(y,r) C Bx(z,2r) and
comparison Lemma 7.3 between the distances, we have

By (z, Cir) C Bi(z,r) C .7/-:(5)(x,27“).

Finally, the proof is completed by projecting the ball By (z, Cir) into the coordinates in F(2), O

Lemma 7.7. Let g € G and x € X. Assume there is a transverse pair (£1,67) € F?) of fized points for the
action of g on F. Then

1A(9) = a,(9)ll < 2dx(z, (§7€7)x):

Proof. For every transverse pair (£7,£7), there exists, up to right multiplication by elements of AM, an
h € G such that h(ng, (o) = (£€7,£7). By assumption, £ and £~ are fixed by g, i.e. gh € hAM. By Cartan
decomposition, for every p € hAMo, we have a,(g) = A(g).

Since hAMo = hAo, which is equal to the flat (€t£7)x. It then follows from Lemma 3.3 that for every

pe(ETe)x
IX(9) = a, (9l = lla,(9) — a,(9)]] < 2dx(z,p).

Taking the infimum over the points in the flat (§7¢7)x yields the upper bound. O

7.3 The configuration
Recall that for all z € X, we defined the constant Cp = 8C,C4eCodx (0:7),

Definition 7.8. Denote by 1o the unique zero in (0,1) of the real valued function r — —logr —max{Cjs,2}r.
For alle > 0 and x € X we define some function

to(z,e) > 2log O, — 2log(e),
where the constant underlying > is the same as in Lemma 5.2.

Proposition 7.9. For all x € X and r € (0,79) and € € (0,min{C;r,eq}), every v € G satisfying the
following conditions is lozodromic.

(i) a,(v) € a™F and d(a,(v),0a") > to(z,€),
(ii) (vF,v;) € F@ are transverse and dx (z, (v 77 )x) <.
Furthermore, its attracting and repelling point satisfy v+ € B(’)@t, €).

Proof. There exist k‘ﬁ,lv; € hyK (as h and W'k, in Definition 3.1), defined up to right multiplication by
elements of M and independent of the choice of representative h, € G such that v = kﬁ eﬂz(V)l;}. Apply

Lemma 5.2, to the element h,tyh, = h;lkﬁeﬂm(”(h;llﬁ)_l € KATTK,
hy'vhe Voo (hi')® € Blh'yf, Cte).

We multiply by h; on the left ’yhxvcgls(hgl'y;)c C heB(h; 'y, Cte). Using the properties of C, > 0
(Lemma 5.3), we deduce the following inclusions
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o heB(h;'~vt,Crte) € B(vif,e),
o V()8 C oV (hyty;)C.

Hence vV (v; )¢ € B(v;, €). Recall that ¢ is the opposition involution and k, € Nk (A) such that . = —Ad(k,),
then
v = ke (ko k)T

Since 1a,(g) is at distance at most to from da* and (y~1)F = ~F, we deduce that v V. (v;)E c B(y; ).
Due to dx (o, (h; v ) (h; v, ) x) = dx(z, (v v, )x) < r, by Lemma 6.2 and Definition 6.1, we obtain

x
O(hg 'y hy g ) = e
Then by Lemma 5.3, we have
0y 72 ) 2 O ta(hy v hy g ) > O te ™,

Due to the choice of €,7, we have C;;1e=3" > 2¢. Hence we have B(yE,¢) € V.(7F)E. Then we deduce that
7 (resp. v~1) has an attracting fixed point £+ € B(v;,¢) (resp. £~ € B(v,,¢)).
Since v admits a fixed maximal flat (€¥¢7)x, we apply Lemma 7.7,

IA() = 2o (Yl < 2dx (2, (€7€7)x).

By hypothesis ¢ < C;'r, Lemma 7.6 implies that B(y],¢) x B(y,,e) € F®(z,2r). Hence \(y) €
Bl(a,(7),4r). Using that r < 1o and ¢ < C;'r, we get a lower bound to(z,e) > —2logr > 4r. We de-
duce that B(a,(7),4r) C a™™, therefore v is loxodromic.

Finally, because the bassin of attraction of 4+ (resp. v7) is a dense open set of F, there are points in
B(vf,¢e) (resp. B(v, ,€)) that v (resp. v~ 1) will attract to v (resp. 7). Since F is Hausdorff for d, we
deduce that v+ = £1 (resp. v~ = £7). O

8 Conjugacy classes and periodic tori

In this section, we remove the torsion free assumption and only assume I' < G to be a cocompact lattice.
We denote in brackets the T'-conjugacy classes of elements in I. Denote by [I'°?] (resp. [['*""9]) the set of
I'-conjugacy classes of loxodromic (resp. singular) elements.

The following Lemma is due to Selberg.

Lemma 8.1 ( [Sel60], [PR72] ). Let T be a cocompact lattice. Let F be a right A-orbit in T\G/M. If
A(F)Nat™ #£0, then F is a compact periodic A-orbit.

Proof. We can write ' = TgAM. For a non zero Y € A(F)Na™", by definition 'gM = I'gexp(Y)M. Hence
there exists an element v € T" such that vg = gexp(Y)my. By Selberg’s Lemma in [Sel60] or [PR72, Lemma
1.10], the map I';/\G, — I'\G is proper, where G, (resp. I'y) denotes the centralizer of v in G (resp. I').
Therefore, I',\G., is compact.

Then G, is a conjugated to AM. Now gAMg~! commutes with v, so G, = gAMg~" and I, =T'NG,,.
Then I'/\G, = (I' N G4)\G compact implies that TgAM = I'G,g is compact in I'\G. So F is compact in
N\G/M. O

In the first paragraph, we give a relation between conjugacy classes of loxodromic elements and periodic
tori. In the second paragraph, we give a proof for completeness that singular elements of a cocompact lattice
do not have a unipotent part.
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8.1 The case of loxodromic elements

For every loxodromic element v € I''** we denote by L., the measure of G/M supported on the A-orbit
of Hopf coordinates (y*,v7;a) such that its disintegration in Hopf coordinates is given by

Ly :=D.+ ®D,- ® Leb,, (42)

where D+ is the Dirac measure at ¥

Remark that the quotient in T'\G/M of the A-orbit (y*,+™;a) only depends on the conjugacy class [7].
Denote by Fj,) the quotient of this A-orbit in I'\G/M. We claim that every point in Fj, is periodic for the
Weyl chamber flow T\G/M ~ e*). Indeed, by (37), that is y(y*,7~,Y) = (v,7~,Y + A(y)) for every
Y € a, hence A(y) € A(Fjy)). If we take g, an element such that (y*,77,0) = g(n0,¢o,0) i.e. that Jordan
diagonalizes v, then the formula also implies g 'vg, € exp(A(y))M. With this g,, we may express this
A-orbit Fi,) =T'g, AM.

Let G(A) :={(Y,F)| Fe C(A), Y e A(F)Natt}.

Proposition 8.2. Let I" be a cocompact lattice. If the action of I' on G/M is free, then the following map
1s well-defined and bijective.

T : [[o?) — G(A)
(V] — (A(Y), Fly))-

Proof. We first prove that the following map is surjective.

U Tl 5 G(A)
v (A(7)7F['y])

Indeed, fix any compact periodic A-orbit F'. We may denote it by ['gAM , for some g € G. For every regular
period in this A-orbit Y € A(F) N a**, by definition, ze¥ = x for all x € F. Now we fix any point z € F
and choose any g € G such that 'gM = z. We deduce that there exists an element vy € I' such that
vy g = gexp(Y)my for some my € M. Hence the surjectivity of the map V.

Note that (ByyB71)Bg = Bge¥ my for all B €T i.e. \T/(ﬂ'yyﬁ’l) = \Tl('yy). It implies that the quotient
map ¥ is well-defined.

Now let us prove the injectivity of the quotient map. Consider vy as above and assume by contradiction
there exists a distinct 74 € ' such that v§-g = gexp(Y)m} for some m} € M. Since vy # 74 we deduce
that 'y;l'ygf = gm;lmgf g~ ! is not the identity. This element 75, 'ni €T fixes gM in G/M, which contradicts
that I" acts on G/M freely. Hence ¥ is injective. O

8.2 The case of singular elements

The following Proposition holds under the hypothesis that I' < G is torsion free and cocompact. It is
tautological for loxodromic elements. The result should be well known for experts in the domain. We give
the proof for singular elements in I" for completeness.

Proposition 8.3. Let I' < G be a cocompact lattice. Assume that the action of T' on the symmetric space
X = G/K is free. Then for all (non trivial) element v € T, its unipotent part in Jordan decomposition is
trivial i.e. there evists h € G and k, € Zx (e*)) such that

v = he* e, bt

Proof. The relation is tautological for loxodromic elements in I'. We prove it for singular elements.

Note that for every non trivial v € T, the injectivity radius of the manifold T\G/K is a lower bound of
inf e x dx(x,vx). By hypothesis, T\G/K is a cocompact manifold. Therefore its injectivity radius has a
positive lower bound and inf,c x dx(z,vx) > 0 for any non trivial v € T.

Fix a non trivial v € I'**9. Consider a point that we denote by p € X where this infimum is realised i.e.
dx (p,vp) = inf e x dx (z,vx). We prove that the bi-infinite geodesic going through p and ~p is a translation
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axis of v on X. Indeed, let y € [p,~p], then on one hand dx (y,vy) > dx(p,yp). On the other hand, by
triangle inequality, left G—invariance of the distance dx, we deduce that

dx (y,vy) < dx(y,vp) +dx(vp,7vy) = dx(y,vp) + dx (»,y).

Since y is in the geodesic segment, we deduce that dx(y,vy) < dx(p,vp), proving that it satisfies the
minimizing equality. By G—invariance over dx and gluing all the geodesic segments v%.[p, yp] together, the
same minimizing equality holds for every point in the geodesic (p,yp).

Set a. = exp (a,(7y)) € A*. It is a non trivial element since ||a,(v)|| = dx (p,yp). Recall that non trivial
geodesics of X based at p are of the form he®Vo, where v € at is non zero and h € G is any element such that
ho = p. Hence, we fix h € G such that ho = p and such that he"% (o = (hafyo)teR denotes the bi-infinite
geodesic (p,yp). Since the latter is a translation axis of , we deduce that for all integer n € Z,

y"ho = haljo. (43)

By the above relation, there exists k., € K such that v = ha,k,h~*. We prove by induction that for all
integer n € Z
a,"kyal € K. (44)

Note that the relation ak, = h~1vh yields the base case n = 0. Assume the relation is true up to some non
negative integer n > 0. By (43) on the one hand, a;”_Qh_lfy"”h € K. On the other hand,

n+2 n+2 n+2

0
—n—2 1_n+2 777, 2 —n—2 n+2 z n+27i _ —k k
a (h 5y h Hh 'yhfa Haq, Y = Ha = H ay " kyay.
k=n-+1

By induction, the second until the last terms in multiplicative order are in K. Furthermore, the entire
product is in K. Consequently, the first term on the left, a ”*1k7a2+1 € K. Therefore, (44) is true for all
non negative integers. For negative integers, using (43) similarly, h=ty"*1h a;"‘l € K for all n > 0. For

the computation, we notice the telescopic product

—
n+1 n+1 n+1

(h19"18) (Hh Lyh) @yt = (Ha,ykﬁ{) a7t = Ha ko

At each step, only the last term on the right is new, hence (44) holds for negative integers.
Since K is compact, the sequence (a;"k,al))nez is bounded. By Proposition 11.4 (iii), we deduce that
the compact element k- is also commutes with a, i.e. ky € Zx(ay).
To conclude, we have found a non trivial a, € AT, a commuting element k., € Zg(a) and h € G such
that
v = ha,k,h~t.

We recognize a Jordan decomposition of the singular element -, where ha.yh’1 (resp. hkyh™1) is the hyper-
bolic (resp. elliptic) part and the unipotent part is trivial. O

The above result implies that when I' is torsion free and uniform, every closed geodesic in the manifold
I'\G/K corresponds to a unique conjugacy class of non trivial elements in I. As a corollary, we deduce an
upper bound for the distance between the Jordan projection and the Cartan projection.

Corollary 8.4. Let ' < G be a torsion free, cocompact irreducible lattice. For every non trivial v € I, there
exists o € [y] in its T'-conjugacy class such that

IA(Y) = @, (h0) || < Cr.
Furthermore, there exists an element g € G with ||g|| < Cr and k, € Zx (eMV)) such that

Y0 = gexp(A(7))kyg "
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Proof. Fix a fundamental domain Dr C X of diameter less than 2 diam(I'\X) and containing o. Set Cr :=
4 diam(T'\X). Fix a non trivial element v € T".

Since I' is cocompact and torsion free, the action of I' on the symmetric space X is free. Hence by the
previous Proposition 8.3, there exists h € G and k., € Zx (e))) such that

v = hexp(A(7))k,h™ 1

Note that he®*"o is a bi-infinite geodesic on X and a translation axis for the action of . Since Dr is a
fundamental domain for the left action of I' on X, there exists 8 € T' such that She®*o N Dp # 0. We
choose a time parameter ¢ € R on the geodesic such that

Bhe* Vo e Dr.
Set g := Bhe*) and consider 7o := Sy~ € [y]. Then

% = gexp(A(7))k,97".
Furthermore, ||g|| < dx(o,go) < Cr. Finally, applying Lemma 3.2 to A(y) = a,,(70) and a,(70), we deduce
the first upper bound. O

9 Equidistribution of flats

For every loxodromic element v € I'°", denote by L, the quotient measure on I'\G/M of L, (Cf. (42)).
Note that Ly,) is supported on Fj,) and is equal to the measure Lp_ given in the introduction. It is also
given by the following construction: we push on Fj,}, the restriction of Leb, to any fundamental domain in
a of the periods A(Fj,), by right A-action of the exponential of such a fundamental domain, starting from
any base point on F[,;. The construction is independent of both the choice of the fundamental domain and
the base point on F[,;.

By Proposition 8.2, there is a bijection between Gj,, and G(A). Let

G0z (D1) = {[1] € Giows A(7) € De}.

By summing over the compact periodic orbits F' € C(A) first, then summing over Y € A(F)ND,, we deduce

that
1 1
WDy 2 o= py 2 ) NDLr, (45)
V]€Gi0z (D) FeC(A)

the measure on the right hand side is exactly the measure in the Theorem 1.4. This formula is also a higher
rank analogue of the first part of (1). Set

. vol(T'\G)
=— E L.
Mr = Dy bl
[’Y]Egloz(@t)

Let mq/yr be the Haar measure on G/M, given by v @ Leb, from Proposition 6.4. Let mp\ g/ be the
quotient measure on I'\G/M. Theorem 1.4 is equivalent to the following one if I is torsion free or if it acts
on G/M freely.

Theorem 9.1. Let ' < G be a cocompact irreducible lattice which acts freely on G/M. Then there exists
u > 0 such that for any Lipschitz function f on T\G/M, ast — oo

vol(I'\G —u

voll\&) Z |A(F) N Dy /f dLp = /f dMb = /f dmprg/m + O(e™ | flLip), (46)

VOl(Dt) FeC(A)

where the Lipschitz norm is with respect to the Riemannian distance d; on T\G/M.

Remark 9.2. The constant Cq equals ||mp\ g arl|/ vol(I'\G), which comes from the choice of m¢/p = v® Leb,
and only depends on G.

We can separate a Lipschitz function as the sum of its positive part and its negative part. So it is sufficient
to prove Theorem 9.1 for non negative Lipschitz functions.
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We are going to prove Theorem 9.1 in this section. Before starting the argument, we fix the parameters
which will be used later. They come from Proposition 7.9. Choose u; > 0 small than min{ep, 1}/10, where
€p is the constant from Lemma 4.1. Set

g:=e """ and t; 1= 3uyt. (47)

Consider the decay rate function u — x(u) > 0 satisfying Lemma 4.1 and the decay coefficient x > 0 given
in Theorem 3.4. Set

1

Y27 5 dim(G/AM)

min{dgr(6u1), dok,us } and 7 := e~ 2", (48)

In this part we use Lips to denote Lipschitz norm with respect to the product distance dy on G/M or
the product distance on F(), according to which space the function lives on.

We lift everything to G/M and prove a local version on G/M in Section 9.1 and 9.2. This local version
works for all irreducible lattices, which will be used in a forthcoming paper for non-cocompact lattices. Then
in Section 9.3, we use the partition of unity to obtain a global version (Theorem 9.1) on T'\G/M.

9.1 Local convergence on corridors

Recall the notation a,(y) := du(x,vz) = a(h;'vh,). For every v € I such that a,(y) € a™, the
geometric Weyl chamber based on z containing vz (resp. vy~ 1z) determines ;" € F (resp. v, ).

For x € X and t > 0, we define the following measures on F x F:

; vol(I'\G)
= g D D_- 4
Ve VOl(Dt) <., v ® Yz ( 9)
yeI'ND; 9 (x)
¢ vol('\G)
V2= Dy S D, ®D,-. (50)

,Yerloanl‘ﬂg (x)

Recall that (p,).cx denotes the Patterson-Sullivan density given in Proposition 6.3 and v is the associated
conformal measure on F3). Let Lip} (F®)(z,7)) be the space of positive compactly supported Lipschitz
functions on F3 (z, 7).

Lemma 9.3. Let T' be an irreducible lattice in G. Fix x € X. Then for every test function ¢ €
Lipt (F@) (x,7)) for every t > Cydx(o,x), there exists a function E(t,,x) such that

o [pav—E@v < [vat, < [vav B (51)

where E(x,1),t) = O(Cy Lip(¢) vol(Dy)~") when t — oo.

Proof. By Theorem 3.4, we obtain the main term with the measure p, ® pi,. Since (&,7) € F3(z,r), so by
Lemma 6.2, we obtain
1< fw(fan)_l < e,

Using the relation dv(¢,n) = %, we deduce that [ du, ® p, < [ dv < e%" [ duy ® pg.
Hence the Lemma. 0

Lemma 9.4. Let I' be a lattice in G. Fiz v € X, for every t > Lougcﬂ for every test function ¢ €
1
Lip} (FP(a,r)),

’/1/) dl/;fc72 7/1/) dI/iJ

where € and t; are given in (47).

IT' N Dy (z)| vol(I'\G)
vol(Dy)

IT' N D! (z)] vol(I'\G)
vol(Dy) ’

< eLipz () +3[[¢loo
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Proof. We split the difference between VY)?IFQ’G S dvl and vicl)ér[\)fc) S dvls,,
DR C A D S AN A I S e e ) SRR 1 CANE )
YETNDT*9 (x) YETlor DT (2) +ETADI* (z) YETtorADT® ()
+ Y Y)Yt

,YerlozﬁDl‘EQ (:C)

For the first term on the right hand side, note that I''** C T", hence

DGRt T S T CANE A > YO, 7s)-

’YEFﬂD:eg(w) ’YEF"’T‘QDISQ (x) ’YE(F\FI"m)ﬂD:eg(w)
Note that ¢t > t; = 3uyt > 0 since u; < 1/10, hence we have the following inclusion
Di*(x) C Dt (z) U (Dy() \ Dy (x)).

Using that ¢ > %, we deduce that t; = 3uit > tg := 2logC, — 2loge = 2log C,, + 2u t. Apply
Proposition 7.9 to every v € Dy(z)\ D}i* () Such that (v, v;) € F®(x,r). Any such element is loxodromic
ie. Dy(z)\ Dj*(z) C G'*. Hence I' N (Dy(z) \ Di*(z)) C I'°® is a set of loxodromic elements. So the
)-

non-loxodromic must lie in (I'\ I'**) N D{*’(z) C D}* (). We deduce the following upper bound.

) wmﬂm\ < [$]ll0 N D8 ()] (52)

YE(T\Ior)NDYI (x)

For the lower term, we split the sum over the partition T N (D;(z) \ D{*(z)) and T'* N D}* (z).

S W) -y = D AN I CRT
yeTlezNDyY (x) y€EDlow
YED¢(2)\D} ()

+ > bV ) = ().
yertozDIt (¢)NDye ()

We bound the lower term.

> wEe) - vt S Aelelrn DE ) (53)
yeTtorAD! (z)NDy e (x)
By Proposition 7.9, the elements v € T N (Dy(x) \ D}*(z)) with (v, v;) € F®(x,r) are loxodromic and

their attractive and repelling points are at distance at most ¢ of respectively 7. Using that ¢ is Lipschitz
and supported on F?)(z,r), we bound above the last term.

S wbdan) - w0t < L) 00 Do) (54)
YEPN(De (2)\D}* ()
Finally, we use the triangle inequality, regroup the terms (52), (53) and (54), then multiply everything by

vol(I'\G
\(/)ol(l;t)) 0

to obtain the main upper bound.

9.2 From corridors to Weyl chambers

Lemma 9.5. Let 1; € Lipf (F@ (x,7)) be a compactly supported non-negative, Lipschitz function and set

w::/ﬂi(.,.; Y) dY.

Then ¢ € Lipt (F® (x,7)) and the following norm bounds hold:
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(a) Lips(1) < 2(2r)8™ @ Lipy(1)).
(b) 1Y ]loo < (2r) 3™ 4]

For z € X and t > 0, we define the following measure on F) x a by

1(T
M., = volTAG) Z L = v}, ® Leb,. (55)

vol(Dr) ~ETlozADT ()

Lemma 9.6. Let I' be an irreducible lattice in G. Fiz x € X, for every t > max{m%la",aldx(o, x)}, for

every test function 1 € LipH (FO(z, 7)),

‘/{/? dM;Q—/iE de/M‘ < cgr/Jde/M +

TN Dy(x)] vol(T\G)

T N D! (2)] vol(F\G))

(2r)dima (E(t, ¥, x) + 2 Lips () vol(Dy)

where E(x,1,t) = O(CyLip(yp) vol(D:) ™) as introduced in Lemma 9.3 and €, t1 are given in (47).

Proof. We set ¢(&+,67) := [, J(f"’,f‘; v) dv. Using Fubini’s theorem on the a coordinate and Proposition
6.4 that mg/p = v ® Leb,, we deduce that

/TlfvdeE,z :/1ZJ dvt , and /{Z?de/M :/¢ du.

We only need to bound [ dv} , — [4 dv. By definition of these measures,

/wdué’z—/@bdu: /wdu;,I—/wdu+/¢dug2—/¢du;,l.

Using Lemma 9.4 on the last term on the right, then Lemma 9.3, the convexity inequality e™" —1 > —r and
non-negativity of ¢ to the other term, we deduce the following bound.

'/zz;dygg/zpdy

< Cg?"/d) dv + E(t, ¢, x)

[T N Dy()] vol(T\G)
VOl(Dt)

IT' N D (2)| vol(T'\G)
VOl(Dt)

+ eLips(v) + 3|9l
By Lemma 9.5 (a) (b), the Lipschitz constants and norms between ¢ and ¢ satisfy Lipy (¢) < 2(2r)3m @ Lipy ()
and [|[Y] s < (2r)3™|9)]|0o. We deduce the domination E(t,v,x) = (2r)3™*O(Lips (1) C, vol(Dy)~*) and
abusing notation we write 4 B

E(t,¢,x) = (2r)"™ E(t, ¢, 7).
Replacing the Lipschitz constants and norms in the upper bound by abuse of notation on E(t,v,x) and lastly
applying Fubini on the first term yields

’/wdv;,z—/wdu

(2r)time (E(t, T,) + 2 Lipa(¥)

< C37“/1deg/M +

D' N Dy()| vol(D\G)

T N D! (z)] vol(F\G)>
vol(Dy) '

The measure in equidistribution is denoted by

Mt = OUNG) Yooz (56)

Vol(Dt) ’yGFlowa)‘('Y)e@t
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Lemma 9.7. There exists C > 0. Fiz x € X, for every test function @Z € Lipj(f(z) (z,1)),

0N D7y, ()] vol(T\G)
VOl(Dt)

(1-Cr) /det 2r</¢th (1+Cr) /det“wHJnm (57)

Proof. By Lemma 7.7, for every loxodromic element g € G'* such that (g%, ¢~) € F® (x,r) then
IM9) — a,(9)]| < 2r.
Hence using triangle inequality we deduce the inclusions
r'r 0 Dy, (z) N {3l (vF77) € FO(a,r)} ©
{yer | X(y) € D, and (vF,77) € FO(z,7)}
C (I'7 N D34, (2)) U (TN Dy, (x)),

here the set I' N D77, () is used to contain all the 4 in the middle set with a,(v) singular. By integrating
w over L., summing and using that % is supported on F (2)(x7 r), we deduce

vol(Dy—_ay t—2r vol(Dy) / t o vol( Dt+2r / t+2r
TolM\G) / AMYT < sy [ aM < SR [0 AMES + [0 N Do @) (58)

vol(T\G)

wol(D,y» apply the local Lipschitz property of t — log(vol(D;)) (Lemma 3.7). O

Finally, we multiply by

Lemma 9.8. Recall ¢y from Lemma 7.8. For 0 < s < min{ep, (log2)/Co} and any z € G/M and x = 7(z) €
X, we have

Bi(z,5) C FO)(z,s)

and for ¢ supported on B(z,s)
Lipap < Cy Lip@.

Proof. By Lemma 7.5, we have the first part.
By Lemma 7.3, we have for 21,25 € Bi(z,s)

di(21, 22) < Crzpyda(z1, 22) /4.
Now due to the definition of C,, we have Cr(.,) < Cr(.) exp(Codx (7(2), m(21)) < 2Cx(2). Therefore
di (21, 22) < Crda(21, 22).

Then use the definition of Lipschitz norm. O

Local version

Proposition 9.9. Let ¢ be a Lipschitz function supported on a ball B(z,7) C G/M and let x = w(z) € X.

If t > max{Cs, M,%}dx o,x), then

’/Jd./\/lt — /’(deg/M‘ =0 (7“||1ZH1 + (C’Z vol(D;) ™" + e+ Vol(Dt)_”(Gul))Lipg(qu .

Proof. Due to Lemma 9.6 and 9.7, we have

i(/Jth—/demg/M> Sr(03+0)/idmc/M +

IT' N Diyor(z)] vol(T\G)
VOl(Dtj:QT)

+ 4|9l

(2r)dima (E(t + 2r, QZa .Z‘) + QELZ'pQ(J) |F N Dtj:Q’l‘( )| VOI(F\G) > .

VOl(Dtigr)
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Let’s estimate the error term in the lower part. By Lemma 9.3 and Lemma 3.7, we have
E(t 4 2,4, ) = O(Cy Lips (1)) vol(Dy) ™).
By Lemma 4.4, we have if ¢t > Csdx (o, z), then

2e Lips () L2 tvfjé)t)i' :(;I(P\@ 0 (eLzmw) (59)

Using that ¢; = 3uyt, we get by applying Lemma 4.3, for ¢ as in the hypothesis then

L N Dy, ()| vol(T\G)
VOI(D ig.,)

3/14/lloc O(|I¢r oo vol(Dy) =), (60)
By Combining the above inequalities, we complete the proof. O

9.3 Proof of the equidistribution

From now on, to the end of this section, we suppose that I' is an irreducible
cocompact lattice in G which acts freely on G/M.

Fix a non-negative test function {/;p € Lipt (T\G/M). We want to prove the following convergence and
dominate its rate

/JF AME PE /&F dmp\a/nr-

Partition of unity By applying Vitali’s covering lemma to the collection { B(y,r/10)},cr\c/um, there exists
a finite set {y; };cs such that B(y;,r/10) are pairwisely disjoint and U;c7rB(y;,r/2) is a covering of T\G/M.
By disjointness, we know |I| < r~4m(@/M) Fix a partition of unity of -Lipschitz functions associated to
the open cover U;erB(y;,r). For the function {/;p on I'\G/M, we can write it as {EF =D el 1[111- using the
partition of unity. For each y;, we can find a lift z; in G/M such that d(o, z;) is less than the diameter of
IN\G/M. By Lemma 9.8, we know that for z; = n(z;) € X

B(z;,r) C .}%(xi,r).

We can take ¢ large such that r = ¢=“2¢ is smaller then the injectivity radius of T\G/M. Then the two balls
B(z;,r) and B(y;,r) are homeomorphic. Let 1; be the lift of ¢¥r; on B(z;,r).
Furthermore, for every ¢ € I, the function 1; is Lipschitz and satisfies the following norm bounds:

(p1) Lips () < Ca, Lipth < Co (Liphr + 2|0r o) < Z2 00| Lip,
(02) [|%illoo < [19r]loos
(03) Sicr il < orlh,

where the first inequality is due to Lemma 9.8.
For every i € I, we can apply Proposition 9.9. Then we use (pl) and (p2) to replace the Lipschitz norm

of wl by wp By compactness, the z;’s are in a bounded set, therefore the constants {C,, };cr are uniformly
bounded. Therefore we have for ¢ large

[ 5t~ [ G amopad = 0 (il + 2ol (D) 4 4 vl D) )Ty ) (61)
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Global domination By the partition of unity, we have
/JFth ZZ/?ZF,ithFZZ/QZith
i i

and

/ir dmp\g/m = Z/&Fz dmp\g/m = Z/{/;z dmg/n-

Therefore, by local dominations, || < r~4™(G/M) and (61), we obtain

/{/JVFde“ - /JF dmp\g/m = O <7”Z [

iel

_ dim vol(Dy)™F ~ £ ~ vol(Dy)—r(6ur)
+rd (G/AM)((rt)|wF|Lip+T|wF|Lip+(t)r|1/)F|Lip> :

Using (p3) and ||¢r|; < lmrG/aml |Yr| Lip, We deduce that
~ ~ vol(Dy) ™ + & + vol(D;) ~#(6u)\ ~
/deM% - /wl“ dmr\g/m = O((T+ o rdim(G/AM)(+1t) >|¢F|Lip :

Recall the choice of parameter in (48) where ¢ = e~ “* and r = e~“2!. Collecting all the error terms
together, we obtain that there exists v > 0 such that

‘/JI‘ dMf — /@ZF de\G/M’ = O(e " [yr|Lip)-

10 Counting conjugacy classes

‘ In this section, we only consider ball domains, i.e. Dy = K exp(Bq4(0,t))K. ‘

Centralizer of singular hyperbolic elements We need to introduce Lg to study the structure of the
centralizer of a semisimple element in G. See for example [BPS19, Section 8.2].
Let © be a subset of simple roots II. Taking the convention e .=11 \ O, we set

po=00® P ga® P 9

aExt ae(ef)

where (@C> is the set of weights generated by OC. Denote by Pe the associated standard parabolic subgroup.
For the opposite parabolic subgroup, Pg , its Lie algebra is given by

Po=000 P 90® P 0o
aext ae(et)
The Lie algebra of the Levi group Lg = Pe N Py is given by
lo:=poNpe=00® P ga®g 0
aec(e0)

Let’s define the O-singular subspace
ae = Nycot ker o,

which has real dimension |©|. Recall m = £ N gy and go = m @ a. Denote by

he =md ag ® @ 9o D g-a
a€e(et)
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the subalgebra where ag is the orthogonal of ag in a for the Killing form and by Hg its associated reductive
Lie group. Then Ag and He commute and

Le = A@H@.

Let 0o(He) 1= maxyep,(0,1) 2aec(oty ¥(Y) be defined using the root space of He. Since © is non empty,
there is a uniform gap i.e. there exists c¢g > 0 such that

do(He) < 0o — ca (62)
for all non empty © C II.

Proof of Theorem 1.7. We want an upper estimate, when ¢ is large, of

[T](@) = {h] € I A(Y) € Ba(0,2)}.

First we estimate the number of conjugacy classes of singular (non-loxodromic) elements whose Jordan
projection has norm less than ¢. By Corollary 8.4 and Lemma 4.2 we have when t is large enough

|[T*™9](t)] < [N DE o] < e, (63)

Let us now provide an upper estimate for the number of loxodromic elements.
Recall that
[T](t) = {[r] € [T""] | A(y) € BSH(0,1)}.

=
Set k := 200 /cq, where cg is defined in (62). Recall that the set [[''°](t) is in bijection with
G'(A)={(YV,F) | FeC(A) and Y € A(F)N B (0,1)}.
We consider the subset of balanced periodic tori

B'(s) = { (v, F) € 6'(4) | AF) 1 B(0, =}

K

and unbalanced periodic tori

u'(s) = { (v, F) € '(4) | AF) N B0, %) # {0y}

Note that Bf(x) (resp. U*(k) ) projects into a subset of periodic tori in C'/(A) of systole larger (resp. smaller)
than £ : the balanced (resp. unbalanced) tori.
We prove that the amount of unbalanced tori is negligible compared to the balanced ones. Then, using

Theorem 9.1 below will allow us to deduce the upper estimate

> vol(Fjy) = vol(Dy)(1 + O(e™)). (64)
QIS0

Abusing notations, we identify the elements of B(k) and U(k) with the corresponding elements in

[Tro) ().

For the balanced part By definition, for every [y] € Bt(k), its periodic torus Fj,) is balanced i.e. its
systole is greater than t/x. Hence, there exists ¢ > 0 such that

VOI(F[,Y]) > ct”.
Consequently, by (64), we deduce that
. vol(Fiy))  vol(Dy)
< .
Bl < > — < (65)
[v]E[Tte=](¢)
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For the unbalanced part We prove that there is a negligible amount of unbalanced elements. Recall

that [[](£) = {[v] € [[] | A(v) € B(0, £)}. Since any unbalanced periodic torus has a period of size less than

K
%, the number of unbalanced periodic tori is bounded above by nW’[F] (£)| where ny, > 1 is the number of
Weyl chambers in a. Then by summing over first the unbalanced periodic tori and then their regular periods,
we deduce the following upper bound

UiR) < Y |[AE) N BITO,1)]. (66)
Blelr(£)

Since I' is cocompact, Corollary 8.4 provides an upper bound for the summation term
t
‘[I‘} (f)( < TN DL | < e/, (67)
P .

Now for the summand, for each [] € [I'](£), there exists a unique non-empty © C II such that A(8) € ad™.
It is given by the biggest subset © C II such that a(A(5)) > 0 for all @ € ©. Denote by Gg the centralizer
of 8 in G. It is conjugated to a closed subgroup of the Levi Lg (which is reductive) i.e. there exists g € G
such that Gs < g~ 'Leg. By Corollary 8.4 and since Zx (exp(A(8)) C He, we may assume that |g|| < Cr
by choosing an appropriate element in the conjugacy class of 8 and abusing notations. By Selberg’s lemma
([PR72, Lemma 1.10]), I'g is a cocompact lattice of G3.

Now, counting only the loxodromic elements, by Corollary 8.4, we have

|A(Fig)) N BSF(0,8)| <|0s N Divel = Dg N (Diro N Gp)l.
Then take some small ball O, C G of injective image in I'\G, we have

vol(OcDyye N Gﬁ) < vol(Diycr N Gﬂ)

Tyn (D <
PN (Dero NGl S — 060G = vol(0.NGa)

It remains to estimate vol(Dyc N Gg). Since gGpg~! < Le and ||g|| < Cr, it is dominated by the volume
growth of the Levi, i.e. there exists C”" > 0 such that

vol(Dyycr N Gg) < vol(Dyyor NgGpag™t) < vol(Dyyen N Leg).
By the same computation as in [Kni97, Theorem 6.2], we obtain that
vol(D; 1o N Le) < t" exp (50(H@)t),
where Hg is the semisimple part of the Levi Le. Due to (62), for all [3] € [I](£),
|A(Fg) N BFT(0,1)] < t"exp((do — ca)t). (68)

Finally, by combining (66), (67) and (68) and our choice of , we get
¢ 2 do 1—e
Ut (k)] < £27 exp (t(50 +2- cG)) < vol(Dy)~. (69)

Back to the main estimate Combining (63), (65) and (69), we deduce the upper estimate because the
singular elements |[['*"9](t)| and the unbalanced periodic tori [U{*(x)| are negligible compared to the balanced
periodic tori

(0] ~ 8] < L) =g

Therefore, the proof is complete. O
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11 Appendix

11.1 Weyl subgroups and parabolic subgroups of G

Recall the notion of parabolic subgroups Pg, Levi subgroups Lg and Ag is the group corresponding to the
Lie algebra ag with © a subset of simple roots II from Section 10. Let Wg be the Weyl subgroup generated
by reflections s, for a € or.

Remark 11.1. The conventions are made such that Py is the Borel subgroup, which is different from [Bou04].

II ) S ) 0
{ew}=Wn C We - Wy=W
B = Py Cc Po=BWgB C P@ZG
AM =Ly C Le C Ly =G
At =Af O Ad D> Af ={ea}

Proposition 11.2 (See [Bou04]Chap IV, §2 section 5 Proposition 2). Let ©1,02 C Il and w € W. Then
P@1wP92 == BW@lwW@QB.

Corollary 11.3. For all ©1,04 C II, the map w € W — BwB € B\G/B induces, by passing the quotient,
the following bijection.

W@1\W/W®2 — P@l\G/P®2
VV@l’wVV@2 — P@le@T

Let 7 be the Cartan involution of G (see [Hel01]): it is an automorphism of G which acts on a by —id,
and on A by a — a~!. The involution 7 induces an involution ¢ : II — II, such that 7(Pg) is conjugated to
P,ey. We have Py = 7(Pe); by definition it is a parabolic subgroup of type +(©).

Proposition 11.4. Let © C II. Then

(i) The sequence (a‘"ga”)n>1 is bounded for all a € Ag+ if and only if g € Pe.
(i’) The sequence (a"g'a‘")n>1 is bounded for all a € ASY if and only if ¢’ € Pg .
(ii) The sequence (a_”ga”)nGZ is bounded for all a € Ang if and only if g € Leo.

Proof. This direction (<) is well-known.

For (i), (=), due to Corollary 11.3, we write g = pjwgps where p1,p2 € Po and wy € W. Due to (<) of
(i), the sequences a~"p;a™ are bounded as n — +o0o0. The behavior of the sequence a~"ga"™ when n — +00
is the same as a "wya". We write a = ¥ with v € ab™, then

afnwgan _ 6n(Ad(w9)v7v)w9.
We conclude that the sequence a~"ga" is bounded when n — +oo if Ad(wy)v = v i.e. w, € Wg. We finish
by noticing g € p1Wep2 = Ps.

For (i’), applying 7 to (i) we obtain that the sequence (7(a)™"7(g)7(a)")n>1 is bounded for all g € Pg.
Due to 7(a) = a~! and 7(Pg) = Pg we obtain (i’).

The point (ii) follows from (i) and (i’) by using Po N Pg = Le. O

11.2 Proof of Theorem 3.4

We give a proof of Theorem 3.4 by redoing the proof of Theorem 7.1 in [GN12a] for Lipschitz functions.
Here we have one notation issue, the quotient I" is on the left I'\G to be consistent with the main part of the
article, which is different from that in [GN12a]. Fix notation vol and dmp\g = dvol /vol(I'\G), which is a
probability measure.
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Quantitative mean ergodic theorem The main engine to obtain equidistribution is the quantitative
mean ergodic theorem on L?(T'\G). For an absolutely continuous probability measure 8 on G, let 7(8)f =
[ (g9)fdB(g) where 7(g) is the right representation of G on I'\G. By Theorem 4.5 in [GN12a], we have

ﬂ@f—/f

< CollBIIL ™D £ l2, (70)
2

where n(G,T) is an integer depending on G, I' and ¢ is any constant in [1,2) such that |||, < co. We
explain why Theorem 4.5 in [GN12a] works in the setting of irreducible lattices.

Verification of conditions in Theorem 4.5 in [GN12a] There are two conditions, the group is simply
connected as an algebraic group, the lattice satisfies that the representation of G on L2(I'\G) is LP* for some
p =2

For the first condition and for real linear algebraic semisimple Lie groups, we do not need that the group
is simply connected. This condition is only required for the p-adic case, as can be observed in the proof of
Theorem 4.5.

Then the crucial condition is the second one. From the parameter p we can compute the rate n(G,T") in
(70), which equals 1 if p = 2 and 2[p/4] if p > 2. In [Oh02], an explicit estimate on p is provided for certain
cases. Additionally, in [GN12a, Remark 4.6], the authors explained several cases where the second condition
holds. We explain this condition also holds when G is a connected real linear algebraic semisimple Lie group
and I is an irreducible lattice. This fact is certainly known among experts in the field and we include it for
the sake of completeness.

The proof that the representation of G on L3(T'\G) is LP* is a two-step process. The first step is to prove
that we have a strong spectral gap, that is, each simple factor G; of G' has no almost invariant vector on
L3(I'\G). The second step is to use the strong spectral gap to prove the representation is L+, which is well
explained in [KM99, Theorem 3.4] and references therein. Hence we only need to explain why the strong
spectral gap holds.

In Kelmer-Sarnak [KS09, Page 284-285], they explained the strong spectral gap for G' = G| x -+ x G/,
where each G; is a non-compact simple Lie group with trivial centre and I' an irreducible lattice. We shall
employ [KM99, Lemma 3.1] (due to Furman-Shalom and Kleinbock-Margulis) to transfer the spectral gap
to finite coverings, thereby deducing the strong spectral gap for semisimple Lie group G without compact
factor from this version.

Return to a connected real linear algebraic semisimple group G without compact factor. There exist
non-compact simple Lie groups Gy, -+ ,G, and a map m : G X -+ X G, — G with finite central kernel (see
for example [Bor91, §22]). There also exists a quotient map 7y from Gy X -+ x G, to G' := G| x --- x G},
such that G’ has trivial centre. Letting IV = mam; T, we obtain an irreducible lattice I” in G’. Then
N\G ~ 77 'T\(Gy x --- x G,.) is a finite covering of ["\G'. Applying the results of [KS09], we know that each
simple factor of G; has no almost invariant vector in L3(I"\G’). Therefore, invoking Lemma 3.1 in [KM99],
we deduce that G; has no almost invariant vector in L3(I'\G).

Lipschitz well rounded domains For all € > 0, denote by O, the ball of radius e centered at identity in
G. Let €;,,; > 0 be a constant such that for all € € (0, €;,,5), the map O — O.I' C I'\G is injective.

For a family of domains (S;)¢~0, we call it Lipschitz well rounded if there exist ¢y > 0, C > 1 such that
for all € < €9, there exist domains S;7, S; and for all t > 1

St_—e - mg,he(’)egStha OEStOE C St—:-s (71)
vol(Si. — S;_.) < Cevol(Sy). (72)

Angular equidistribution for regular elements Let A° = {exp(a), a € a*tt, d(a,0a"t) > §}.

Theorem 11.5. Let G be a connected, real linear, semisimple Lie group of non-compact type. Let I' < G be
an irreducible lattice. There exist & > 0 and Cs > 0 only depending on n(G,T') (from (70)) and G. Let (St)i>o0
be Lipschitz well rounded and Sy C KA°K. There exists C; > 0 depending on n(G,T'), G and the family
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(Si)ts0. Then for all Lipschitz test functions 1 € Lip(F2)), there exists E(t,1) = O(Lip(1)) vol(S;)™*) when
t > {Cs|log€inj|, C7} such that

1
VO].(St)

1
Z ¢(VJ7V;):7 7/1d/,to®u0+E(t,77[}),

~ESeAT vol(I\G) Jrxr

where all the implied constants only depending on G and n(G,T).

Remark 11.6. Theorem 11.5 is exactly Theorem 7.2 in [GN12a] with an explicit error term, where no proof
of Theorem 7.2 is given. But we cannot obtain this Theorem directly from Theorem 7.1 for Lipschitz well-
rounded sets in [GN12a] by approximating Lipschitz functions by level sets because the level sets of a Lipschitz
function may not be uniformly Lipschitz well rounded. For one-dimensional cases, (i.e. SLa(R), Lipschitz
function on SO(2)), we can take a Lipschitz function 1 as the distance to a Cantor set. Then the level sets
{¢ < 1/n} approximate the Cantor set. Each set is Lipschitz well-rounded, but the constant in Lipschitz
well-rounded blow up as n tends to infinity because the number of intervals in {¢) < 1/n} goes to infinite.

In order to obtain the domains we are interested, we need to add singular elements.

Corollary 11.7. Let G be a connected, real linear, semisimple Lie group of non-compact type. Let I’ < G
be an irreducible lattice. There exist k > 0 and Cg > 0 only depending on n(G,T") (from (70)) and G. Let
(Dt)ts0 be one of the two type of domains. There exists C7 > 0 depending on n(G,T'), G and the family
(Dt)t>o0-

Then for all Lipschitz test functions 1 € Lip(F®?)), there exists E(t,1)) = O(Lip(y)vol(D;)™*) when
t > {Cs|logé€in,l|, Cr} such that

1
VOl(Dt)

S i) = e [ e @ o+ B ),

nyD:"‘gﬁl" VOl(F\G) FxF
where all the implied constants only depending on G and n(G,T).

Proof that Corollary 11.7 = Theorem 3.4. Due to (18) v~ = h,(h;'vh.)T, we apply Theorem 11.7 to the
lattice h 'T'h, and the Lipschitz function (-, -) := % (hy-, h,-). This is the reason that we need a uniformed
version for lattices hy; 'T'h, and we made dependence of constants in Theorem 11.7 more transparent. The
constant n(G,hy 'T'h;) is the same as n(G,T") due to invariance of the Haar measure. For €;,; of h; 'Th,,

we have

inf  dg(o,h; 'vhy) > e C9x©@2) inf  dg(o, 7).
Loinf  da(o.hy yhe) 2 € Loinf  da(0)

By Lemma 5.3, the action of h, on F is C, Lipschitz. From these, we obtain Theorem 3.4. O

Step 1: The first step is to transfer the counting problem to integrals, which can be treated by the mean
ergodic theorem.

Lemma 11.8 (Effective Cartan decomposition, Proposition 7.3 in [GN12a], first appeared in [GOS10]).
There exist 6 > 0 and lg,e1 > 0. If € < €1, then for g = kiaks € KA°K, we have

OEQOE C (Oloe n K)klM(Oloe N A)akQ(OloeK).

For ease of notation, when there is no confusion, we will use ki, a, ks to denote elements come from
the Cartan decomposition g = kjaks. Notice that by identifying F with K/M, we have kiM = ~ and
ky*M = ;. Let

pi(g) = Ls,(a)y (K1, k2),
where ¢ (ki k2) = (ki M, ky M) = (g5, g5 ).
We introduce two auxiliary functions, which is the replacement of Lipschitz well-roundness of sets in

[GN12a]. Recall
COETOIN

Lipy = max{ Y] 00, SUP
| | T#yY d(:c,y)
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Let

pt0) = Lo (9)((kn. ko) + (Lip)loe)
Pre(9) = 1g- (g) max{y(k, k2) — (Lipy)loe, 0}.
From the definition, we know p, . < p; < p;.

Lemma 11.9. For g € OO, with € < €1 we obtain
pre(9) < pr(7) < pilc(9). (73)
Proof. 1f p; .(g) # 0, then g € S;_ .. By v € O.gO, we obtain
a(y) € (O N A)alg) NSt
By (71), we know 1g,(a(y)) = 1. By Lemma 11.8 and Lipschitz property of ¢, we obtain
U(k1(7), k2(7)) =2 ¢ (k1(g), k2(9)) — (Lipy)loe.
This proves the left hand side. For the other side, the proof is similar. O

Take 1. = mﬂoe be the normalized characteristic function of Oc. Let ¢(gI') = >°. cr 1e(gv). The
counting is connected to integral by the following.

Lemma 11.10. For h in O, with € < €1, we have

/ (g™ hT)p; . (g) dvol(g) <> pu(y) < / (9™ hD)pf(g) dvol(g). (74)
yel’
Proof. By using (73), the proof is almost the same as Lemma 2.1 in [GN12a]. O

Step 2: This step will estimate the error terms in the mean ergodic theorem.
+

We want to apply the mean ergodic theorem to probability measures Lre  Before doing so, we need to
t,e

I pi.

compute some integrals. The computation is a bit tedious. This step is to verify similar stable mean
ergodic theorems, the main consequence is (76) and (78).
Let’s first compute the difference.

Lemma 11.11. We have for € < €q

/Pj,e dvol—/p;’6 dvol « 6</¢ +lO(Lip¢)) vol(Sy). (75)

Proof. By definition
/ pi. dvol — / pr. dvol
< vol (S/,) ( / ¢+loe(Lip1/))) —vol (Si_.) ( / ) — loe(Lipw)>
_ (vol (Si.) —vol (S 6)) / 0+ lae(Lip) (vol (51, +vol (5;.))
< (e [ v+ tatzivn) ) woi(s:) + o,

where the last inequality is from Lipschitz well-roundness (72). O

Let 87, := pi/ [ pie
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Lemma 11.12. For e < min{ [ ¢/2loLipy,€0,1/2C}, t > 1 and f € L*(I'\G)

Im(Br) f — / fll2 < E@)[1 £z (76)
with o I
B() = (g ( ﬁw e, (77)

ke = 1/qn(G,T) and C > 0 only depending on G.
Fore<ey, t>1and f € L3(T'\G)

Im(BE) — / flz < E@®)fe. (78)

The main difference between the above two inequalities is that for ﬁ;r ., we don’t need an extra condition
of € depending on .

Proof. We compute the integral of p, .. We have

/pt_)E dvol > VOI(S;_E)(/MJ — (Lipy)lge).

Due to (72), we obtain
vol(S;_.) > (1 — Ce) vol(Sy).
Hence if € < 1/2C, then
[ i dvo s vous( [ v - (Limpioo

Therefore if € < min{ [ /2lo(Lipy),1/2C}, we obtain

/p;6 dvol > vol(S;) /w. (79)

y (71)
vol(S;f) > vol(Sy). (80)

Therefore
/p;'fE dvol > /pt dvol > vol(S;) /¢. (81)

After these preparation, we can start to compute the integral appears in error term of mean ergodic
theorem. By (79), we obtain when e < min{ [ ¢/2ly(Lipy),1/2C}

1
ozl ([ ot < [ loit/worsy) [ o) < s Limey/( [ o)

For p/., by (81) and (80) we have

o/ [ ot < s [0+ ividtooy /([ o)1

We obtain if ¢ > ¢,
1
+le T < ————(Lipyp)? a, 82
o[ v < g Giv) /([ 0 (52)
Applying the above formulas for gti, combined with mean ergodic estimate (70), we obtain the lemma. O

Step 3: The mean ergodic theorem only gives an estimate of L? norm, but what we need is an estimate
at some points. So we need to use the Chebyshev inequality. The remaining work is to collect the error
terms. This part is similar to the proof of Theorem 1.9 in [GN12a].
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Proof of Theorem 11.5 . Suppose € < €;,,;. Applying (78) to f = ¢., by Chebyshev’s inequality, we obtain
for any n > 0

mralh (w870 (e0) — [ >y < (FLEdE22 (53
If (E@t)|¢ellr2/m? < mma(Oe)/2 = vol(O.)/2V(T), (here we need ”906”%2(1‘\0) = vol(O.)/V(T').) for
2E(t)

example we can take n = then due to O, injective there exists h € O, such that

vol(O¢)?

w(B7) (@) (AT) < + / o.

Then by Lemma 11.10,

> vidn) = 2w < w0 [ e < 0+ ) [ i

yel'NSt ~el
- fﬂt .
= s (L V(D) + OlelLipes) vol(S1).
where the last inequality is due to (75). Therefore
Yoerns, Y08%) 1 E®) | Livv 1 E(t) , Lipy
[ pe V() — 2vol(O,) fzp edo K
where dj is the dimension of group G. Hence
4+ =y Vvol(Sy) / / E(t) Lipyp
> v0vd) vy ) ¢S e ey ) (84)

yel'NS

In order to optimize the error term, we take

e

then the error term in the above formula is

Li Li oL
(1) /00 (S0 00 vl (S 0 40) < o)< (22,

Jv flﬁ

where the last equality is due to (77) and gxe = 1/n(G,T") < 1, and where ( = (¢ — 1)k2/(1 + do). Here €
should be less than ey, €5, but

1/(1+do) 1/(14do)
e< ¢ — fﬁf < % . (85)
vol(5,)@Dr Lipy vol(5,)@-1=3

The condition on € is satisfied if ¢ is greater than some constant to = C’|log e1| > 0 and Cg|log €;r,j|. Therefore
by (84), we obtain one part of Theorem 11.5 for ¢ > ¢ty = max{Cs|log €;n |, t2}, with to not depending on .

For p; ., we can obtain the same bound with extra condition that e < min{ [ /2l Lipy,1/2C}. Due to
(85), if ¢ is large than some constant C7 only depending on n(G,I"), G and vol(S(t)), then we have € < 1/2C.
For the other inequality, if not then we have € > [ 1/2loLipy, by (85), which implies

Lip > vol(S,)¢? / ¥, (86)

with {5 = (¢ — 1)ka/dy. Therefore by non-negativeness of v

vol St (/¢ Cvol(S,)™ CzLszp) <0< > w(ka(y) k(7).

YNSe
By taking
5= min{C,G1/2.G) = minfGr /2, —— =Dy
the proof is complete. O
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11.3 Explicit cases: ball domain and parallelotope domain

Verifying Lipschitz well roundness We only consider ball and parallelotope domains. We take
S, =D,NKAK, S =D,NKA° K, S; = D,NKA°*“K,
where § are from Lemma 11.8. By Lemma 3.2, we know that this choice of Si satisfies (71).

Dy

+
St—i—a

Figure 2: Ball domain, S;:E is the blue outer layer delimited by the dash dots, S; in green yellow is the mid
layer delimited by the gray line, S;_, is the innermost layer delimited by the gray dotted line

+
St+€

Figure 3: Parallelotope domain, Stﬂs is the blue outer layer delimited by the gray dash dots, S; in green
yellow is the mid layer delimited by the gray line and a portion of the black line, S;__ is the innermost layer
delimited by the gray dotted line

We need to verify (72). We observe that

VOI(S:;E - Si;e) < VOI(Sttre - Stjre) + VOI(S;LE - S;e) + VOI(StJ:e - S;e)
< vol(Sfie — Spie) +vol(Sipe — Si—e) + vol(S;~, — S;_,).

€

Both the case will be verified through local Lipschitz property of logarithm of volume (second term) and
estimates of volume near the boundary of the region (first and third term).
By admitting Lemma 11.13 and Lemma 11.14, we obtain

vol(Si. — S;_.) < Cevol(Sy),

which is exactly (72).
It remains to prove Lemma 11.13 and Lemma 11.14.

40



Boundary estimate We recall the Harish-Chandra formula

vol(K exp(D)K) = /ij I sinh(a(Y))™ dLeb(Y),

where m,, € N is the multiplicity of the positive root o and D is measurable subset of a™. To simplify the
notation, we write &; C a™ for S; = K exp(&;)K. Similarly for Sti and D;.
Due to supy ¢, 2p(Y) < dot, by the Harish-Chandra formula and sinh(a(Y)) < e*¥), we obtain

vol(S;) < vol(Dy) < / e?(Y) qy « edotyre, (87)
Dy
Then we do the rest cases.

Lemma 11.13. For ball and parallelotope domains, we have
e < vol(S;) < vol(Dy), vol(S;™ — 8;7) < evol(S;).

Proof. For the upper bound, by the Harish-Chandra formula, we obtain
vol(S;H — 8;7) < / e?PY) dy « et Lecot,
ef-6;

where co = supy cs+_g- 2p(Y)/t < §p due to the choice of the domains.

For the lower bound of ball domain, we use volume estimates from [Kni97], [Hel00, Thm 5.8], [GOS09,
Thm 6.1] to obtain that vol(S;) =< t(re=1)/2¢dt,

For the lower bound of parallelotope domain, due to Lemma 3.6, we obtain

vol(S;) > vol(Dy) — vol(D;\S;) > e,

Local Lipschitz property of logarithm of volume

Lemma 11.14. There exists C > 0 such that for e <1/C and t > 1
vol(Siie) — vol(Sy) < Cevol(Sy), vol(Diye) — vol(Dy) < Cevol(Dy).

Proof. We use a similar computation as in Proposition 7.1 in [GN10]. We use the polar coordinate (r,6) €
R* x af with af = {Y € o, ||Y| = 1}. Then we can rewrite the Harish-Chandra formula. For ball and
parallelotope domains, using the cone shape of domains, we obtain

t(0)+e

£(r,0) dr df = / do £(r,0) dr. (88)

£(6)

VOI(D,H_6 — Dt) = /

(1,0)EDtyc—D¢

Since &(r,0) is a continuous function, we have

t(0)+e
/ £(r.6) dr = c£(r(6),6),
+(0)

with some 7(0) € [t(),t(0) + €]. Lemma A.3 in [EMS96] implies that there exists C' > 0 such that for r» > 1

&(r,0) < C/OTS(S,H) ds.

We have
r(0) t(0)+e
0.0 <0 [ esoas<c [ g0 as
0 0
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Therefore, we have

t(0)+e
vol(Dyye — D) < C’/ dé <e/ &(r,0) dr) = Cevol(Die).
0

By taking e small such that Ce < 1/2, we obtain
VOl(Dt+E — Dt) < 0,6 VOl(Dt)

for some new constant C’ > 0.
For both ball domain and parallelotope domain, due to definition and boundary estimates (Lemma 4.1)
and by setting C' := 1_CC€ we have

vol(Siyc) — vol(S;) = vol(Dyyc) — vol(D;) — vol((Dsyc — Dy) N A?)
< vol(Dyye) — vol(Dy) < Cevol(Dy) < C'evol(Sy).

11.4 Proof of Corollary 11.7

The domains we are interested in may have singular elements. We use estimates of singular elements to
obtain Corollary 11.7.

Proof of Corollary 11.7. Let S = D} — S, for ball and parallelotope domains, then

1 - 1 )
m > V0T -y 2 Y05

yE(S uS)NT ~yESNT

1
volstus5 2. ) (Vol(StUSf)_VOISt 2. 050)

yeSINT ~ESNT
- |So N T N |S; N T|vol(S?) Wlos.
vol(St) vol(S;)?

By Lemma 3.2 and Lemma 4.1

Vol(SfOEmj)
vol(Oc,,.,)

For the term |S; N T, by a similar estimate and Lemma 11.14, we obtain

< Vol(SzH»eq:nj)e_f dimG < VOl(St)l_KE-i dimG.

t+€in;j inj mj

1Sy NI <

|S, NT| < vol(Sy)e;, dim ¢,

znj

Therefore, we have

! S ()

vol(S; U S?) vol Z 01375

~yE(S uSHNT yeSth
< vol(S;) Fe; MG 4h| .

zng

Therefore, if ¢t > C|log€;y,;| for some constant C' > 0, then we obtain the result. O
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